计算DFT的双因子算法

Haijun Li, Caojun Yan, Wenbiao Peng
{"title":"计算DFT的双因子算法","authors":"Haijun Li, Caojun Yan, Wenbiao Peng","doi":"10.1109/IASP.2009.5054641","DOIUrl":null,"url":null,"abstract":"A fast Fourier transform algorithm for computing N=N<inf>1</inf>×N<inf>2</inf>-point DFT, where both factors N<inf>1</inf> and N<inf>2</inf> are smaller positive integer, said to be a double factors algorithm(DFA), is developed. The DFA subdivides a DFT of length N=N<inf>1</inf>×N<inf>2</inf> into smaller transforms of length N<inf>1</inf> and N<inf>2</inf> and takes the following steps:(1) computes N<inf>1</inf> N<inf>2</inf>-point DFTs , (2) multiplies the values of DFT by twiddle factors, (3) computes N<inf>2</inf> N<inf>1</inf>-point DFTs. The structure of the DFA is similar to those of the most simple PFA and WFTA, but N<inf>1</inf> and N<inf>2</inf> are not necessarily relatively prime. When N=2<sup>M</sup> or 4<sup>M</sup>, the total number of computations of DFT in the DFA is less than those in the radix-2 and radix-4 FFT algorithm but slightly more than that in the split-radix FFT algorithm. When N is other values, the total number of computations of DFT in the DFA is less than those in the PFA and WFTA.","PeriodicalId":143959,"journal":{"name":"2009 International Conference on Image Analysis and Signal Processing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Double factors algorithm for computing DFT\",\"authors\":\"Haijun Li, Caojun Yan, Wenbiao Peng\",\"doi\":\"10.1109/IASP.2009.5054641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast Fourier transform algorithm for computing N=N<inf>1</inf>×N<inf>2</inf>-point DFT, where both factors N<inf>1</inf> and N<inf>2</inf> are smaller positive integer, said to be a double factors algorithm(DFA), is developed. The DFA subdivides a DFT of length N=N<inf>1</inf>×N<inf>2</inf> into smaller transforms of length N<inf>1</inf> and N<inf>2</inf> and takes the following steps:(1) computes N<inf>1</inf> N<inf>2</inf>-point DFTs , (2) multiplies the values of DFT by twiddle factors, (3) computes N<inf>2</inf> N<inf>1</inf>-point DFTs. The structure of the DFA is similar to those of the most simple PFA and WFTA, but N<inf>1</inf> and N<inf>2</inf> are not necessarily relatively prime. When N=2<sup>M</sup> or 4<sup>M</sup>, the total number of computations of DFT in the DFA is less than those in the radix-2 and radix-4 FFT algorithm but slightly more than that in the split-radix FFT algorithm. When N is other values, the total number of computations of DFT in the DFA is less than those in the PFA and WFTA.\",\"PeriodicalId\":143959,\"journal\":{\"name\":\"2009 International Conference on Image Analysis and Signal Processing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Image Analysis and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IASP.2009.5054641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2009.5054641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种计算N=N1×N2-point DFT的快速傅立叶变换算法,其中因子N1和N2均为较小的正整数,称为双因子算法(DFA)。DFA将长度为N=N1×N2的DFT细分为长度为N1和N2的更小的变换,并执行以下步骤:(1)计算N1个N2点DFT,(2)将DFT的值乘以中间因子,(3)计算N2个N1点DFT。DFA的结构与最简单的PFA和WFTA相似,但N1和N2不一定是相对素数。当N=2M或4M时,DFA中DFT的总计算次数少于基数2和基数4的FFT算法,但略多于分割基数FFT算法。当N为其他值时,DFA中DFT的总计算次数少于PFA和WFTA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double factors algorithm for computing DFT
A fast Fourier transform algorithm for computing N=N1×N2-point DFT, where both factors N1 and N2 are smaller positive integer, said to be a double factors algorithm(DFA), is developed. The DFA subdivides a DFT of length N=N1×N2 into smaller transforms of length N1 and N2 and takes the following steps:(1) computes N1 N2-point DFTs , (2) multiplies the values of DFT by twiddle factors, (3) computes N2 N1-point DFTs. The structure of the DFA is similar to those of the most simple PFA and WFTA, but N1 and N2 are not necessarily relatively prime. When N=2M or 4M, the total number of computations of DFT in the DFA is less than those in the radix-2 and radix-4 FFT algorithm but slightly more than that in the split-radix FFT algorithm. When N is other values, the total number of computations of DFT in the DFA is less than those in the PFA and WFTA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信