非物质系统在任意拉格朗日欧拉运动描述中的变分原理

G. Pennisi, O. Bauchau
{"title":"非物质系统在任意拉格朗日欧拉运动描述中的变分原理","authors":"G. Pennisi, O. Bauchau","doi":"10.1115/detc2020-22494","DOIUrl":null,"url":null,"abstract":"\n Dynamics of axially moving continua, such as beams, cables and strings, can be modeled by use of an Arbitrary La-grangian Eulerian (ALE) approach. Within a Finite Element framework, an ALE element is indeed a non-material system, i.e. a mass flow occurs at its boundaries. This article presents the dynamic description of such systems and highlights the peculiarities that arise when applying standard mechanical principles to non-material systems. Starting from D’Alembert’s principle, Hamilton’s principle and Lagrange’s equations for a non-material system are derived and the significance of the additional transport terms discussed. Subsequently, the numerical example of a length-changing beam is illustrated. Energetic considerations show the complex dynamic behavior non-material systems might exhibit.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variational Principles for Non-Material Systems Within an Arbitrary Lagrangian Eulerian Description of Motion\",\"authors\":\"G. Pennisi, O. Bauchau\",\"doi\":\"10.1115/detc2020-22494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Dynamics of axially moving continua, such as beams, cables and strings, can be modeled by use of an Arbitrary La-grangian Eulerian (ALE) approach. Within a Finite Element framework, an ALE element is indeed a non-material system, i.e. a mass flow occurs at its boundaries. This article presents the dynamic description of such systems and highlights the peculiarities that arise when applying standard mechanical principles to non-material systems. Starting from D’Alembert’s principle, Hamilton’s principle and Lagrange’s equations for a non-material system are derived and the significance of the additional transport terms discussed. Subsequently, the numerical example of a length-changing beam is illustrated. Energetic considerations show the complex dynamic behavior non-material systems might exhibit.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

轴向运动连续体(如梁、索和弦)的动力学可以用任意的拉-格朗日-欧拉(ALE)方法来建模。在有限元框架内,ALE单元实际上是一个非物质系统,即在其边界处发生质量流。本文介绍了这种系统的动态描述,并强调了当将标准机械原理应用于非材料系统时出现的特性。从达朗贝尔原理出发,导出了非物质系统的哈密顿原理和拉格朗日方程,并讨论了附加输运项的意义。随后,给出了变长光束的数值算例。能量方面的考虑显示了非物质系统可能表现出的复杂动态行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Principles for Non-Material Systems Within an Arbitrary Lagrangian Eulerian Description of Motion
Dynamics of axially moving continua, such as beams, cables and strings, can be modeled by use of an Arbitrary La-grangian Eulerian (ALE) approach. Within a Finite Element framework, an ALE element is indeed a non-material system, i.e. a mass flow occurs at its boundaries. This article presents the dynamic description of such systems and highlights the peculiarities that arise when applying standard mechanical principles to non-material systems. Starting from D’Alembert’s principle, Hamilton’s principle and Lagrange’s equations for a non-material system are derived and the significance of the additional transport terms discussed. Subsequently, the numerical example of a length-changing beam is illustrated. Energetic considerations show the complex dynamic behavior non-material systems might exhibit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信