基于倾斜梯度的腕戴设备跌倒检测算法

ShengQian Zhou, Jianxin Chen, Xinzhi Wang, Liang Zhou, B. Zheng, Jingwu Cui
{"title":"基于倾斜梯度的腕戴设备跌倒检测算法","authors":"ShengQian Zhou, Jianxin Chen, Xinzhi Wang, Liang Zhou, B. Zheng, Jingwu Cui","doi":"10.1109/ICCE-TW.2015.7216825","DOIUrl":null,"url":null,"abstract":"Fall detection is one of the feasible solutions for solving the problem of aging of population. This paper presents an algorithm to detect falling for the elderly with one wrist-worn device. The algorithm has lower computation complexity to determine the fall event according to the inclination gradient. Experimental results show that it performs better than another similar devices with the average sensitivity and specificity of 94.44% and 100%, respectively.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inclination gradient-based fall detection algorithm for wrist-worn device\",\"authors\":\"ShengQian Zhou, Jianxin Chen, Xinzhi Wang, Liang Zhou, B. Zheng, Jingwu Cui\",\"doi\":\"10.1109/ICCE-TW.2015.7216825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fall detection is one of the feasible solutions for solving the problem of aging of population. This paper presents an algorithm to detect falling for the elderly with one wrist-worn device. The algorithm has lower computation complexity to determine the fall event according to the inclination gradient. Experimental results show that it performs better than another similar devices with the average sensitivity and specificity of 94.44% and 100%, respectively.\",\"PeriodicalId\":340402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2015.7216825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

跌倒检测是解决人口老龄化问题的可行方案之一。本文提出了一种单腕装置检测老年人跌倒的算法。该算法根据倾角梯度确定坠落事件的计算复杂度较低。实验结果表明,该仪器的平均灵敏度为94.44%,特异度为100%,优于同类仪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inclination gradient-based fall detection algorithm for wrist-worn device
Fall detection is one of the feasible solutions for solving the problem of aging of population. This paper presents an algorithm to detect falling for the elderly with one wrist-worn device. The algorithm has lower computation complexity to determine the fall event according to the inclination gradient. Experimental results show that it performs better than another similar devices with the average sensitivity and specificity of 94.44% and 100%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信