大体积数据集的非多边形等值面绘制

James W. Durkin, J. Hughes
{"title":"大体积数据集的非多边形等值面绘制","authors":"James W. Durkin, J. Hughes","doi":"10.1109/VISUAL.1994.346306","DOIUrl":null,"url":null,"abstract":"Surface-based rendering techniques, particularly those that extract a polygonal approximation of an isosurface, are widely used in volume visualization. As dataset size increases though, the computational demands of these methods can overwhelm typically available computing resources. Recent work on accelerating such techniques has focused on preprocessing the volume data or postprocessing the extracted polygonization. The algorithm presented, concentrates instead on streamlining the surface extraction process itself so as to accelerate the rendering of large volumes. The technique shortens the conventional isosurface visualization pipeline by eliminating the intermediate polygonization. We compute the contribution of the isosurface within a volume cell to the resulting image directly from a simplified numerical description of the cell/surface intersection. The approach also reduces the work in the remaining stages of the visualization process. By quantizing the volume data, we exploit precomputed and cached data at key processing steps to improve rendering efficiency. The resulting implementation provides comparatively fast renderings with reasonable image quality.<<ETX>>","PeriodicalId":273215,"journal":{"name":"Proceedings Visualization '94","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Nonpolygonal isosurface rendering for large volume datasets\",\"authors\":\"James W. Durkin, J. Hughes\",\"doi\":\"10.1109/VISUAL.1994.346306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface-based rendering techniques, particularly those that extract a polygonal approximation of an isosurface, are widely used in volume visualization. As dataset size increases though, the computational demands of these methods can overwhelm typically available computing resources. Recent work on accelerating such techniques has focused on preprocessing the volume data or postprocessing the extracted polygonization. The algorithm presented, concentrates instead on streamlining the surface extraction process itself so as to accelerate the rendering of large volumes. The technique shortens the conventional isosurface visualization pipeline by eliminating the intermediate polygonization. We compute the contribution of the isosurface within a volume cell to the resulting image directly from a simplified numerical description of the cell/surface intersection. The approach also reduces the work in the remaining stages of the visualization process. By quantizing the volume data, we exploit precomputed and cached data at key processing steps to improve rendering efficiency. The resulting implementation provides comparatively fast renderings with reasonable image quality.<<ETX>>\",\"PeriodicalId\":273215,\"journal\":{\"name\":\"Proceedings Visualization '94\",\"volume\":\"232 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Visualization '94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.1994.346306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Visualization '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.1994.346306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

基于表面的渲染技术,特别是那些提取多边形近似等值面的技术,在体可视化中被广泛使用。但是,随着数据集大小的增加,这些方法的计算需求可能会压倒通常可用的计算资源。最近关于加速这种技术的工作主要集中在体数据的预处理或提取多边形的后处理上。该算法专注于简化表面提取过程本身,从而加速大体积的渲染。该技术通过消除中间多边形化,缩短了传统的等值面可视化流水线。我们直接从简化的单元/表面交集的数值描述中计算体积单元内的等值面对所得图像的贡献。这种方法还减少了可视化过程中剩余阶段的工作。通过量化体数据,我们在关键处理步骤中利用预先计算和缓存的数据来提高渲染效率。最终的实现提供了相对较快的渲染和合理的图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonpolygonal isosurface rendering for large volume datasets
Surface-based rendering techniques, particularly those that extract a polygonal approximation of an isosurface, are widely used in volume visualization. As dataset size increases though, the computational demands of these methods can overwhelm typically available computing resources. Recent work on accelerating such techniques has focused on preprocessing the volume data or postprocessing the extracted polygonization. The algorithm presented, concentrates instead on streamlining the surface extraction process itself so as to accelerate the rendering of large volumes. The technique shortens the conventional isosurface visualization pipeline by eliminating the intermediate polygonization. We compute the contribution of the isosurface within a volume cell to the resulting image directly from a simplified numerical description of the cell/surface intersection. The approach also reduces the work in the remaining stages of the visualization process. By quantizing the volume data, we exploit precomputed and cached data at key processing steps to improve rendering efficiency. The resulting implementation provides comparatively fast renderings with reasonable image quality.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信