端到端级联CNN同时人脸检测和对齐

Sanyuan Zhao, Hongmei Song, Weilin Cong, Q. Qi, Hui Tian
{"title":"端到端级联CNN同时人脸检测和对齐","authors":"Sanyuan Zhao, Hongmei Song, Weilin Cong, Q. Qi, Hui Tian","doi":"10.1109/ICVRV.2017.00016","DOIUrl":null,"url":null,"abstract":"Real-world face detection and alignment demand an advanced discriminative model to address challenges by pose, lighting and expression. Recent studies have utilized the relation between face detection and alignment to make models computationally efficiency, but they ignore the connection between each cascade CNNs. In this paper, we combine detection, calibration and alignment in each cascade structure and propose an End-to-End cascade Online Hard Example Mining (OHEM) for training, which expert in accelerating convergence. Experiments on FDDB and AFLW demonstrate considerable improvement on accuracy and speed.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"End-to-End Cascade CNN for Simultaneously Face Detection and Alignment\",\"authors\":\"Sanyuan Zhao, Hongmei Song, Weilin Cong, Q. Qi, Hui Tian\",\"doi\":\"10.1109/ICVRV.2017.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world face detection and alignment demand an advanced discriminative model to address challenges by pose, lighting and expression. Recent studies have utilized the relation between face detection and alignment to make models computationally efficiency, but they ignore the connection between each cascade CNNs. In this paper, we combine detection, calibration and alignment in each cascade structure and propose an End-to-End cascade Online Hard Example Mining (OHEM) for training, which expert in accelerating convergence. Experiments on FDDB and AFLW demonstrate considerable improvement on accuracy and speed.\",\"PeriodicalId\":187934,\"journal\":{\"name\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2017.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现实世界的人脸检测和对齐需要一个先进的判别模型来解决姿势、照明和表情方面的挑战。最近的研究利用了人脸检测和对齐之间的关系来提高模型的计算效率,但忽略了每个级联cnn之间的联系。在本文中,我们将每个级联结构的检测、校准和对齐结合起来,提出了一种端到端的级联在线硬例挖掘(OHEM)训练方法,该方法擅长加速收敛。在FDDB和AFLW上的实验表明,在精度和速度上都有很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-to-End Cascade CNN for Simultaneously Face Detection and Alignment
Real-world face detection and alignment demand an advanced discriminative model to address challenges by pose, lighting and expression. Recent studies have utilized the relation between face detection and alignment to make models computationally efficiency, but they ignore the connection between each cascade CNNs. In this paper, we combine detection, calibration and alignment in each cascade structure and propose an End-to-End cascade Online Hard Example Mining (OHEM) for training, which expert in accelerating convergence. Experiments on FDDB and AFLW demonstrate considerable improvement on accuracy and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信