用于形状分析和计算解剖的黎曼几何

Martins Bruveris
{"title":"用于形状分析和计算解剖的黎曼几何","authors":"Martins Bruveris","doi":"10.1142/9789811200137_0002","DOIUrl":null,"url":null,"abstract":"Shape analysis and compuational anatomy both make use of sophisticated tools from infinite-dimensional differential manifolds and Riemannian geometry on spaces of functions. While comprehensive references for the mathematical foundations exist, it is sometimes difficult to gain an overview how differential geometry and functional analysis interact in a given problem. This paper aims to provide a roadmap to the unitiated to the world of infinite-dimensional Riemannian manifolds, spaces of mappings and Sobolev metrics: all tools used in computational anatomy and shape analysis.","PeriodicalId":367095,"journal":{"name":"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Riemannian Geometry for Shape Analysis and Computational Anatomy\",\"authors\":\"Martins Bruveris\",\"doi\":\"10.1142/9789811200137_0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shape analysis and compuational anatomy both make use of sophisticated tools from infinite-dimensional differential manifolds and Riemannian geometry on spaces of functions. While comprehensive references for the mathematical foundations exist, it is sometimes difficult to gain an overview how differential geometry and functional analysis interact in a given problem. This paper aims to provide a roadmap to the unitiated to the world of infinite-dimensional Riemannian manifolds, spaces of mappings and Sobolev metrics: all tools used in computational anatomy and shape analysis.\",\"PeriodicalId\":367095,\"journal\":{\"name\":\"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811200137_0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811200137_0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

形状分析和计算解剖学都利用了函数空间上的无限维微分流形和黎曼几何的复杂工具。虽然存在数学基础的综合参考资料,但有时很难获得微分几何和泛函分析在给定问题中如何相互作用的概述。本文旨在为无限维黎曼流形、映射空间和索博列夫度量的统一世界提供一个路线图:计算解剖学和形状分析中使用的所有工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riemannian Geometry for Shape Analysis and Computational Anatomy
Shape analysis and compuational anatomy both make use of sophisticated tools from infinite-dimensional differential manifolds and Riemannian geometry on spaces of functions. While comprehensive references for the mathematical foundations exist, it is sometimes difficult to gain an overview how differential geometry and functional analysis interact in a given problem. This paper aims to provide a roadmap to the unitiated to the world of infinite-dimensional Riemannian manifolds, spaces of mappings and Sobolev metrics: all tools used in computational anatomy and shape analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信