递归聚类血液数据的混合指数成分

E. Suzdaleva, I. Nagy, Matej Petrous
{"title":"递归聚类血液数据的混合指数成分","authors":"E. Suzdaleva, I. Nagy, Matej Petrous","doi":"10.1109/ICIIBMS.2017.8279700","DOIUrl":null,"url":null,"abstract":"The paper deals with the mixture-based clustering of anonymized data of patients with leukemia. The presented clustering algorithm is based on the recursive Bayesian mixture estimation for the case of exponential components and the data-dependent dynamic pointer model. The main contribution of the paper is the online performance of clustering, which allows us to actualize the statistics of components and the pointer model with each new measurement. Results of the application of the algorithm to the clustering of hematological data are demonstrated and compared with theoretical counterparts.","PeriodicalId":122969,"journal":{"name":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recursive clustering hematological data using mixture of exponential components\",\"authors\":\"E. Suzdaleva, I. Nagy, Matej Petrous\",\"doi\":\"10.1109/ICIIBMS.2017.8279700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the mixture-based clustering of anonymized data of patients with leukemia. The presented clustering algorithm is based on the recursive Bayesian mixture estimation for the case of exponential components and the data-dependent dynamic pointer model. The main contribution of the paper is the online performance of clustering, which allows us to actualize the statistics of components and the pointer model with each new measurement. Results of the application of the algorithm to the clustering of hematological data are demonstrated and compared with theoretical counterparts.\",\"PeriodicalId\":122969,\"journal\":{\"name\":\"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS.2017.8279700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2017.8279700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了白血病患者匿名数据的混合聚类方法。本文提出的聚类算法是基于指数分量的递归贝叶斯混合估计和数据依赖的动态指针模型。本文的主要贡献是在线聚类性能,它允许我们实现每个新测量的组件和指针模型的统计。最后给出了该算法在血液学数据聚类中的应用结果,并与理论结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive clustering hematological data using mixture of exponential components
The paper deals with the mixture-based clustering of anonymized data of patients with leukemia. The presented clustering algorithm is based on the recursive Bayesian mixture estimation for the case of exponential components and the data-dependent dynamic pointer model. The main contribution of the paper is the online performance of clustering, which allows us to actualize the statistics of components and the pointer model with each new measurement. Results of the application of the algorithm to the clustering of hematological data are demonstrated and compared with theoretical counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信