基于p样条的柔性平滑:一种统一的方法

I. Currie, M. Durbán
{"title":"基于p样条的柔性平滑:一种统一的方法","authors":"I. Currie, M. Durbán","doi":"10.1191/1471082x02st039ob","DOIUrl":null,"url":null,"abstract":"We consider the application of P-splines (Eilers and Marx, 1996) to three classes of models with smooth components: semiparametric models, models with serially correlated errors, and models with heteroscedastic errors. We show that P-splines provide a common approach to these problems. We set out a simple nonparametric strategy for the choice of the P-spline parameters (the number of knots, the degree of the P-spline, and the order of the penalty) and use mixed model (REML) methods for smoothing parameter selection. We give an example of a model in each of the three classes and analyse appropriate data sets.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":"{\"title\":\"Flexible smoothing with P-splines: a unified approach\",\"authors\":\"I. Currie, M. Durbán\",\"doi\":\"10.1191/1471082x02st039ob\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the application of P-splines (Eilers and Marx, 1996) to three classes of models with smooth components: semiparametric models, models with serially correlated errors, and models with heteroscedastic errors. We show that P-splines provide a common approach to these problems. We set out a simple nonparametric strategy for the choice of the P-spline parameters (the number of knots, the degree of the P-spline, and the order of the penalty) and use mixed model (REML) methods for smoothing parameter selection. We give an example of a model in each of the three classes and analyse appropriate data sets.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"310 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"155\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082x02st039ob\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082x02st039ob","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 155

摘要

我们考虑将p样条(Eilers和Marx, 1996)应用于三类具有光滑分量的模型:半参数模型、具有序列相关误差的模型和具有异方差误差的模型。我们证明了p样条为解决这些问题提供了一种常见的方法。我们提出了一个简单的非参数策略来选择p样条参数(结点数、p样条的程度和惩罚的顺序),并使用混合模型(REML)方法来选择平滑参数。我们给出了三个类别中每个类别的模型示例,并分析了相应的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible smoothing with P-splines: a unified approach
We consider the application of P-splines (Eilers and Marx, 1996) to three classes of models with smooth components: semiparametric models, models with serially correlated errors, and models with heteroscedastic errors. We show that P-splines provide a common approach to these problems. We set out a simple nonparametric strategy for the choice of the P-spline parameters (the number of knots, the degree of the P-spline, and the order of the penalty) and use mixed model (REML) methods for smoothing parameter selection. We give an example of a model in each of the three classes and analyse appropriate data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信