一谐波注入锁环振荡器

B. Mesgarzadeh, A. Alvandpour
{"title":"一谐波注入锁环振荡器","authors":"B. Mesgarzadeh, A. Alvandpour","doi":"10.1109/CICC.2006.320927","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of first-harmonic injection locking in CMOS ring oscillators. In this analysis, Adler's equation is proved by using a new analytical approach based on the propagation delay of an inverter stage. Also the behavior of the injection-locked ring oscillators from phase noise point of view is discussed and a closed-form equation for the phase noise of such oscillators is derived. According to the measurement results on a DLL-based frequency multiplier implemented in 0.13-mum CMOS process, good agreement between theoretical prediction and measurements is observed","PeriodicalId":269854,"journal":{"name":"IEEE Custom Integrated Circuits Conference 2006","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"First-Harmonic Injection-Locked Ring Oscillators\",\"authors\":\"B. Mesgarzadeh, A. Alvandpour\",\"doi\":\"10.1109/CICC.2006.320927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analysis of first-harmonic injection locking in CMOS ring oscillators. In this analysis, Adler's equation is proved by using a new analytical approach based on the propagation delay of an inverter stage. Also the behavior of the injection-locked ring oscillators from phase noise point of view is discussed and a closed-form equation for the phase noise of such oscillators is derived. According to the measurement results on a DLL-based frequency multiplier implemented in 0.13-mum CMOS process, good agreement between theoretical prediction and measurements is observed\",\"PeriodicalId\":269854,\"journal\":{\"name\":\"IEEE Custom Integrated Circuits Conference 2006\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Custom Integrated Circuits Conference 2006\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2006.320927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Custom Integrated Circuits Conference 2006","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2006.320927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文分析了CMOS环形振荡器中一次谐波注入锁紧问题。在分析中,采用一种新的基于逆变器级传播延迟的分析方法证明了Adler方程。从相位噪声的角度讨论了锁注入环振子的特性,并推导了锁注入环振子相位噪声的封闭方程。根据在0.13 μ m CMOS工艺中实现的基于dll的倍频器的测量结果,理论预测与测量结果吻合较好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-Harmonic Injection-Locked Ring Oscillators
This paper presents an analysis of first-harmonic injection locking in CMOS ring oscillators. In this analysis, Adler's equation is proved by using a new analytical approach based on the propagation delay of an inverter stage. Also the behavior of the injection-locked ring oscillators from phase noise point of view is discussed and a closed-form equation for the phase noise of such oscillators is derived. According to the measurement results on a DLL-based frequency multiplier implemented in 0.13-mum CMOS process, good agreement between theoretical prediction and measurements is observed
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信