{"title":"由弯曲函数构造半弯曲函数","authors":"G. Cohen, Sihem Mesnager","doi":"10.1090/conm/625/12496","DOIUrl":null,"url":null,"abstract":"Plateaued functions are significant in cryptography as they possess various desirable cryptographic properties. Two important classes of plateaued functions are those of bent functions and semi-bent functions, due to their combinatorial and algebraic properties. Constructions of bent functions have been extensively investigated. However only few constructions of semi-bent functions have been proposed in the literature. In general, finding new constructions of bent and semi-bent functions is not a simple task. The paper is devoted to the construction of semi-bent functions with even number of variables. We show that bent functions give rise to primary and secondary-like constructions of semi-bent functions.","PeriodicalId":269522,"journal":{"name":"Discrete Geometry and Algebraic Combinatorics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On constructions of semi-bent functions from bent functions\",\"authors\":\"G. Cohen, Sihem Mesnager\",\"doi\":\"10.1090/conm/625/12496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plateaued functions are significant in cryptography as they possess various desirable cryptographic properties. Two important classes of plateaued functions are those of bent functions and semi-bent functions, due to their combinatorial and algebraic properties. Constructions of bent functions have been extensively investigated. However only few constructions of semi-bent functions have been proposed in the literature. In general, finding new constructions of bent and semi-bent functions is not a simple task. The paper is devoted to the construction of semi-bent functions with even number of variables. We show that bent functions give rise to primary and secondary-like constructions of semi-bent functions.\",\"PeriodicalId\":269522,\"journal\":{\"name\":\"Discrete Geometry and Algebraic Combinatorics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Geometry and Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/625/12496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Geometry and Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/625/12496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On constructions of semi-bent functions from bent functions
Plateaued functions are significant in cryptography as they possess various desirable cryptographic properties. Two important classes of plateaued functions are those of bent functions and semi-bent functions, due to their combinatorial and algebraic properties. Constructions of bent functions have been extensively investigated. However only few constructions of semi-bent functions have been proposed in the literature. In general, finding new constructions of bent and semi-bent functions is not a simple task. The paper is devoted to the construction of semi-bent functions with even number of variables. We show that bent functions give rise to primary and secondary-like constructions of semi-bent functions.