一种新的基于网络模型的ICA滤波器用于人脸识别

Yongqing Zhang, Tianyu Geng, Ying Cai
{"title":"一种新的基于网络模型的ICA滤波器用于人脸识别","authors":"Yongqing Zhang, Tianyu Geng, Ying Cai","doi":"10.1109/ICCWAMTIP.2017.8301462","DOIUrl":null,"url":null,"abstract":"Despite the great success of deep learning convolution networks, researchers are not yet clear about its feature learning mechanism and optimal network configuration. In this paper, we present a cascaded linear convolution network based on ICA filters, termed ICANet. ICANet mainly includes three parts: convolution layer, binary hash and block histogram. The results show that ICANet has a very good performance in face recognition tasks.","PeriodicalId":259476,"journal":{"name":"2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel network model based ICA filter for face recognition\",\"authors\":\"Yongqing Zhang, Tianyu Geng, Ying Cai\",\"doi\":\"10.1109/ICCWAMTIP.2017.8301462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the great success of deep learning convolution networks, researchers are not yet clear about its feature learning mechanism and optimal network configuration. In this paper, we present a cascaded linear convolution network based on ICA filters, termed ICANet. ICANet mainly includes three parts: convolution layer, binary hash and block histogram. The results show that ICANet has a very good performance in face recognition tasks.\",\"PeriodicalId\":259476,\"journal\":{\"name\":\"2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2017.8301462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2017.8301462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

尽管深度学习卷积网络取得了巨大的成功,但研究人员对其特征学习机制和最优网络配置尚不清楚。在本文中,我们提出了一个基于ICA滤波器的级联线性卷积网络,称为ICANet。ICANet主要包括三个部分:卷积层、二值哈希和块直方图。结果表明,ICANet在人脸识别任务中具有很好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel network model based ICA filter for face recognition
Despite the great success of deep learning convolution networks, researchers are not yet clear about its feature learning mechanism and optimal network configuration. In this paper, we present a cascaded linear convolution network based on ICA filters, termed ICANet. ICANet mainly includes three parts: convolution layer, binary hash and block histogram. The results show that ICANet has a very good performance in face recognition tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信