基于小波的数据摄动同时隐私保护和统计保护

Lian Liu, Jie Wang, Jun Zhang
{"title":"基于小波的数据摄动同时隐私保护和统计保护","authors":"Lian Liu, Jie Wang, Jun Zhang","doi":"10.1109/ICDMW.2008.77","DOIUrl":null,"url":null,"abstract":"With the rapid development of data mining technologies, preserving privacy in certain data becomes a challenge to data mining applications in many fields, especially in medical, financial and homeland security fields. We present a privacy-preserving strategy based on wavelet perturbation to keep the data privacy and data statistical properties and data mining utilities at the same time. Our mathematical analyses and experimental results show that this method can keep the distance before and after perturbation and it can preserve the basic statistical properties of the original data while maximizing the data utilities. Through experiments on real-life datasets, we conclude that this method is a promising privacy-preserving and statistics-preserving technique.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Wavelet-Based Data Perturbation for Simultaneous Privacy-Preserving and Statistics-Preserving\",\"authors\":\"Lian Liu, Jie Wang, Jun Zhang\",\"doi\":\"10.1109/ICDMW.2008.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of data mining technologies, preserving privacy in certain data becomes a challenge to data mining applications in many fields, especially in medical, financial and homeland security fields. We present a privacy-preserving strategy based on wavelet perturbation to keep the data privacy and data statistical properties and data mining utilities at the same time. Our mathematical analyses and experimental results show that this method can keep the distance before and after perturbation and it can preserve the basic statistical properties of the original data while maximizing the data utilities. Through experiments on real-life datasets, we conclude that this method is a promising privacy-preserving and statistics-preserving technique.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

随着数据挖掘技术的快速发展,如何保护特定数据的隐私成为数据挖掘在许多领域应用的挑战,特别是在医疗、金融和国土安全领域。提出了一种基于小波摄动的隐私保护策略,既能保证数据的隐私性,又能保证数据的统计特性和数据挖掘的实用性。数学分析和实验结果表明,该方法既能保持扰动前后的距离,又能保持原始数据的基本统计特性,同时又能最大限度地提高数据的效用。通过对真实数据集的实验,我们得出结论,该方法是一种很有前途的隐私保护和统计保护技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet-Based Data Perturbation for Simultaneous Privacy-Preserving and Statistics-Preserving
With the rapid development of data mining technologies, preserving privacy in certain data becomes a challenge to data mining applications in many fields, especially in medical, financial and homeland security fields. We present a privacy-preserving strategy based on wavelet perturbation to keep the data privacy and data statistical properties and data mining utilities at the same time. Our mathematical analyses and experimental results show that this method can keep the distance before and after perturbation and it can preserve the basic statistical properties of the original data while maximizing the data utilities. Through experiments on real-life datasets, we conclude that this method is a promising privacy-preserving and statistics-preserving technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信