近似魔法:发现不寻常的医疗时间序列

Jessica Lin, Eamonn J. Keogh, A. Fu, H. V. Herle
{"title":"近似魔法:发现不寻常的医疗时间序列","authors":"Jessica Lin, Eamonn J. Keogh, A. Fu, H. V. Herle","doi":"10.1109/CBMS.2005.34","DOIUrl":null,"url":null,"abstract":"In this work we introduce the new problem of finding time series discords. Time series discords are subsequences of longer time series that are maximally different to all the rest of the time series subsequences. They thus capture the sense of the most unusual subsequence within a time series. While the brute force algorithm to discover time series discords is quadratic in the length of the time series, we show a simple algorithm that is 3 to 4 orders of magnitude faster than brute force, while guaranteed to produce identical results.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"Approximations to magic: finding unusual medical time series\",\"authors\":\"Jessica Lin, Eamonn J. Keogh, A. Fu, H. V. Herle\",\"doi\":\"10.1109/CBMS.2005.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we introduce the new problem of finding time series discords. Time series discords are subsequences of longer time series that are maximally different to all the rest of the time series subsequences. They thus capture the sense of the most unusual subsequence within a time series. While the brute force algorithm to discover time series discords is quadratic in the length of the time series, we show a simple algorithm that is 3 to 4 orders of magnitude faster than brute force, while guaranteed to produce identical results.\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

摘要

在这项工作中,我们引入了寻找时间序列不和谐的新问题。时间序列不一致是较长时间序列的子序列,它与所有其他时间序列子序列最大不同。因此,它们捕捉到了时间序列中最不寻常的子序列的感觉。虽然发现时间序列不一致的蛮力算法在时间序列长度上是二次的,但我们展示了一个简单的算法,它比蛮力快3到4个数量级,同时保证产生相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximations to magic: finding unusual medical time series
In this work we introduce the new problem of finding time series discords. Time series discords are subsequences of longer time series that are maximally different to all the rest of the time series subsequences. They thus capture the sense of the most unusual subsequence within a time series. While the brute force algorithm to discover time series discords is quadratic in the length of the time series, we show a simple algorithm that is 3 to 4 orders of magnitude faster than brute force, while guaranteed to produce identical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信