利用多目标可得性对系统风险预测进行回溯测试

Tobias Fissler, Y. Hoga
{"title":"利用多目标可得性对系统风险预测进行回溯测试","authors":"Tobias Fissler, Y. Hoga","doi":"10.1080/07350015.2023.2200514","DOIUrl":null,"url":null,"abstract":"Systemic risk measures such as CoVaR, CoES and MES are widely-used in finance, macroeconomics and by regulatory bodies. Despite their importance, we show that they fail to be elicitable and identifiable. This renders forecast comparison and validation, commonly summarised as `backtesting', impossible. The novel notion of \\emph{multi-objective elicitability} solves this problem. Specifically, we propose Diebold--Mariano type tests utilising two-dimensional scores equipped with the lexicographic order. We illustrate the test decisions by an easy-to-apply traffic-light approach. We apply our traffic-light approach to DAX~30 and S\\&P~500 returns, and infer some recommendations for regulators.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability\",\"authors\":\"Tobias Fissler, Y. Hoga\",\"doi\":\"10.1080/07350015.2023.2200514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systemic risk measures such as CoVaR, CoES and MES are widely-used in finance, macroeconomics and by regulatory bodies. Despite their importance, we show that they fail to be elicitable and identifiable. This renders forecast comparison and validation, commonly summarised as `backtesting', impossible. The novel notion of \\\\emph{multi-objective elicitability} solves this problem. Specifically, we propose Diebold--Mariano type tests utilising two-dimensional scores equipped with the lexicographic order. We illustrate the test decisions by an easy-to-apply traffic-light approach. We apply our traffic-light approach to DAX~30 and S\\\\&P~500 returns, and infer some recommendations for regulators.\",\"PeriodicalId\":118766,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2023.2200514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2200514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

CoVaR、CoES和MES等系统性风险指标在金融、宏观经济学和监管机构中被广泛使用。尽管它们很重要,但我们表明它们不能被引出和识别。这使得预测比较和验证(通常被概括为“回溯测试”)变得不可能。\emph{多目标适格性}的新概念解决了这一问题。具体地说,我们提出了Diebold—Mariano类型测试,使用配备字典顺序的二维分数。我们通过一种易于应用的红绿灯方法来说明测试决策。我们将红绿灯方法应用于DAX 30和标准普尔500指数的回报,并对监管机构提出了一些建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability
Systemic risk measures such as CoVaR, CoES and MES are widely-used in finance, macroeconomics and by regulatory bodies. Despite their importance, we show that they fail to be elicitable and identifiable. This renders forecast comparison and validation, commonly summarised as `backtesting', impossible. The novel notion of \emph{multi-objective elicitability} solves this problem. Specifically, we propose Diebold--Mariano type tests utilising two-dimensional scores equipped with the lexicographic order. We illustrate the test decisions by an easy-to-apply traffic-light approach. We apply our traffic-light approach to DAX~30 and S\&P~500 returns, and infer some recommendations for regulators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信