不确定奇异系统的鲁棒性分析与反馈镇定

Dianhui Wang, R. Yu
{"title":"不确定奇异系统的鲁棒性分析与反馈镇定","authors":"Dianhui Wang, R. Yu","doi":"10.1109/ASCC.2004.184981;","DOIUrl":null,"url":null,"abstract":"This paper studies complete stability robustness and feedback stabilization problem for uncertain singular systems. New perturbation upper bound that ensures the perturbed singular system remains completely stable (impulse-free and asymptotically stable) is derived. Analysis and examples show that the present result is less conservative than the previous ones. Based on an algorithm for eigenstructure assignment, a procedure to construct a state feedback matrix that maximizes the complete stability robustness bound of the closed-loop system is presented.","PeriodicalId":169932,"journal":{"name":"2004 5th Asian Control Conference (IEEE Cat. No.04EX904)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robustness analysis and feedback stabilization of uncertain singular systems\",\"authors\":\"Dianhui Wang, R. Yu\",\"doi\":\"10.1109/ASCC.2004.184981;\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies complete stability robustness and feedback stabilization problem for uncertain singular systems. New perturbation upper bound that ensures the perturbed singular system remains completely stable (impulse-free and asymptotically stable) is derived. Analysis and examples show that the present result is less conservative than the previous ones. Based on an algorithm for eigenstructure assignment, a procedure to construct a state feedback matrix that maximizes the complete stability robustness bound of the closed-loop system is presented.\",\"PeriodicalId\":169932,\"journal\":{\"name\":\"2004 5th Asian Control Conference (IEEE Cat. No.04EX904)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 5th Asian Control Conference (IEEE Cat. No.04EX904)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASCC.2004.184981;\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 5th Asian Control Conference (IEEE Cat. No.04EX904)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2004.184981;","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究不确定奇异系统的完全稳定、鲁棒性和反馈镇定问题。导出了保证摄动奇异系统保持完全稳定(无脉冲和渐近稳定)的新摄动上界。分析和算例表明,本文的计算结果比以往的计算结果保守性较低。基于特征结构赋值算法,给出了构造使闭环系统完全稳定鲁棒界最大化的状态反馈矩阵的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness analysis and feedback stabilization of uncertain singular systems
This paper studies complete stability robustness and feedback stabilization problem for uncertain singular systems. New perturbation upper bound that ensures the perturbed singular system remains completely stable (impulse-free and asymptotically stable) is derived. Analysis and examples show that the present result is less conservative than the previous ones. Based on an algorithm for eigenstructure assignment, a procedure to construct a state feedback matrix that maximizes the complete stability robustness bound of the closed-loop system is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信