6. 稀疏抽样曲线的统计

M. Holden, L. Holden
{"title":"6. 稀疏抽样曲线的统计","authors":"M. Holden, L. Holden","doi":"10.18261/9788215041193-2020-06","DOIUrl":null,"url":null,"abstract":"We develop new statistical methods for analyzing sparsely sampled curves that vary in time. The typical dataset is differences in log gene expressions from case-control pairs for a large number of genes sampled relative to time of diagnosis. We focus on weak signals in the gene expression in many genes instead of strong signals in a few genes. The methods are based on moving windows in time, hypothesis testing, dimension reductions and randomization of the time to observa-tion.","PeriodicalId":386489,"journal":{"name":"Advancing Systems Epidemiology in Cancer","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"6. Statistics of Sparsely Sampled Curves\",\"authors\":\"M. Holden, L. Holden\",\"doi\":\"10.18261/9788215041193-2020-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop new statistical methods for analyzing sparsely sampled curves that vary in time. The typical dataset is differences in log gene expressions from case-control pairs for a large number of genes sampled relative to time of diagnosis. We focus on weak signals in the gene expression in many genes instead of strong signals in a few genes. The methods are based on moving windows in time, hypothesis testing, dimension reductions and randomization of the time to observa-tion.\",\"PeriodicalId\":386489,\"journal\":{\"name\":\"Advancing Systems Epidemiology in Cancer\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advancing Systems Epidemiology in Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18261/9788215041193-2020-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advancing Systems Epidemiology in Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18261/9788215041193-2020-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了新的统计方法来分析随时间变化的稀疏抽样曲线。典型的数据集是病例对照对中大量基因的对数基因表达与诊断时间的差异。我们关注的是许多基因表达中的弱信号,而不是少数基因表达中的强信号。该方法基于时间移动窗口、假设检验、降维和观察时间的随机化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
6. Statistics of Sparsely Sampled Curves
We develop new statistical methods for analyzing sparsely sampled curves that vary in time. The typical dataset is differences in log gene expressions from case-control pairs for a large number of genes sampled relative to time of diagnosis. We focus on weak signals in the gene expression in many genes instead of strong signals in a few genes. The methods are based on moving windows in time, hypothesis testing, dimension reductions and randomization of the time to observa-tion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信