相关密度峰聚类方法综述

Yan Li, Ling Sun, Yongchuan Tang, W. You
{"title":"相关密度峰聚类方法综述","authors":"Yan Li, Ling Sun, Yongchuan Tang, W. You","doi":"10.1109/IHMSC55436.2022.00042","DOIUrl":null,"url":null,"abstract":"Density peaks clustering (DPC) is a succinct and efficient algorithm to discover the structure of datasets, and it has been used in a number of domains. However, applying DPC to real-world tasks faces two main challenges: how to estimate the appropriate local density in datasets with different density distributions, and how to robustly forms clusters. Substantial researches make efforts to improve DPC from the aspects of these two challenges so as to result in promising clustering results. In this study, at first, we comprehensively review the different types of local density estimation methods and cluster assignment strategies in DPC-related works, then briefly introduce the application of DPC. At last, we discuss potential future research directions of the DPC algorithm.","PeriodicalId":447862,"journal":{"name":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of related density peaks clustering approaches\",\"authors\":\"Yan Li, Ling Sun, Yongchuan Tang, W. You\",\"doi\":\"10.1109/IHMSC55436.2022.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density peaks clustering (DPC) is a succinct and efficient algorithm to discover the structure of datasets, and it has been used in a number of domains. However, applying DPC to real-world tasks faces two main challenges: how to estimate the appropriate local density in datasets with different density distributions, and how to robustly forms clusters. Substantial researches make efforts to improve DPC from the aspects of these two challenges so as to result in promising clustering results. In this study, at first, we comprehensively review the different types of local density estimation methods and cluster assignment strategies in DPC-related works, then briefly introduce the application of DPC. At last, we discuss potential future research directions of the DPC algorithm.\",\"PeriodicalId\":447862,\"journal\":{\"name\":\"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC55436.2022.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC55436.2022.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

密度峰聚类(DPC)是一种简洁、高效的发现数据集结构的算法,已在许多领域得到应用。然而,将DPC应用于现实任务面临两个主要挑战:如何在不同密度分布的数据集中估计适当的局部密度,以及如何鲁棒地形成聚类。大量研究从这两个方面对DPC进行了改进,并取得了令人满意的聚类结果。本文首先综述了DPC相关工作中不同类型的局部密度估计方法和聚类分配策略,然后简要介绍了DPC的应用。最后,讨论了DPC算法未来可能的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of related density peaks clustering approaches
Density peaks clustering (DPC) is a succinct and efficient algorithm to discover the structure of datasets, and it has been used in a number of domains. However, applying DPC to real-world tasks faces two main challenges: how to estimate the appropriate local density in datasets with different density distributions, and how to robustly forms clusters. Substantial researches make efforts to improve DPC from the aspects of these two challenges so as to result in promising clustering results. In this study, at first, we comprehensively review the different types of local density estimation methods and cluster assignment strategies in DPC-related works, then briefly introduce the application of DPC. At last, we discuss potential future research directions of the DPC algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信