{"title":"相关性在种群编码中的作用","authors":"P. Latham, Y. Roudi","doi":"10.1201/b14756-9","DOIUrl":null,"url":null,"abstract":"Correlations among spikes, both on the same neuron and across neurons, are ubiquitous in the brain. For example cross-correlograms can have large peaks, at least in the periphery, and smaller -- but still non-negligible -- ones in cortex, and auto-correlograms almost always exhibit non-trivial temporal structure at a range of timescales. Although this has been known for over forty years, it's still not clear what role these correlations play in the brain -- and, indeed, whether they play any role at all. The goal of this chapter is to shed light on this issue by reviewing some of the work on this subject.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Role of correlations in population coding\",\"authors\":\"P. Latham, Y. Roudi\",\"doi\":\"10.1201/b14756-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correlations among spikes, both on the same neuron and across neurons, are ubiquitous in the brain. For example cross-correlograms can have large peaks, at least in the periphery, and smaller -- but still non-negligible -- ones in cortex, and auto-correlograms almost always exhibit non-trivial temporal structure at a range of timescales. Although this has been known for over forty years, it's still not clear what role these correlations play in the brain -- and, indeed, whether they play any role at all. The goal of this chapter is to shed light on this issue by reviewing some of the work on this subject.\",\"PeriodicalId\":298664,\"journal\":{\"name\":\"arXiv: Neurons and Cognition\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/b14756-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/b14756-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Correlations among spikes, both on the same neuron and across neurons, are ubiquitous in the brain. For example cross-correlograms can have large peaks, at least in the periphery, and smaller -- but still non-negligible -- ones in cortex, and auto-correlograms almost always exhibit non-trivial temporal structure at a range of timescales. Although this has been known for over forty years, it's still not clear what role these correlations play in the brain -- and, indeed, whether they play any role at all. The goal of this chapter is to shed light on this issue by reviewing some of the work on this subject.