采用RBF神经网络和模糊控制器对木浆游离度进行稳定

J. Bard, J. Patton, M. Musavi
{"title":"采用RBF神经网络和模糊控制器对木浆游离度进行稳定","authors":"J. Bard, J. Patton, M. Musavi","doi":"10.1109/IJCNN.1999.830848","DOIUrl":null,"url":null,"abstract":"The quality of paper produced in a papermaking process is largely dependent on the properties of the wood pulp used. One important property is pulp freeness. Ideally, a constant, predetermined level of freeness is desired to achieve the highest quality of paper possible. The focus of this paper is on developing a system to control the wood pulp freeness. A radial basis function (RBF) artificial neural network was used to model the freeness and a fuzzy logic controller was used to control the input parameters to maintain a desired level of freeness. Ideally, the controller will reduce pulp freeness fluctuations in order to improve overall paper sheet quality and production.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using RBF neural networks and a fuzzy logic controller to stabilize wood pulp freeness\",\"authors\":\"J. Bard, J. Patton, M. Musavi\",\"doi\":\"10.1109/IJCNN.1999.830848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of paper produced in a papermaking process is largely dependent on the properties of the wood pulp used. One important property is pulp freeness. Ideally, a constant, predetermined level of freeness is desired to achieve the highest quality of paper possible. The focus of this paper is on developing a system to control the wood pulp freeness. A radial basis function (RBF) artificial neural network was used to model the freeness and a fuzzy logic controller was used to control the input parameters to maintain a desired level of freeness. Ideally, the controller will reduce pulp freeness fluctuations in order to improve overall paper sheet quality and production.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.830848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.830848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在造纸过程中生产的纸的质量在很大程度上取决于所用木浆的性质。一个重要的特性是果肉游离度。理想情况下,为了获得尽可能高的纸张质量,需要一个恒定的、预定的自由度水平。本文的重点是开发一种控制木浆游离度的系统。采用径向基函数(RBF)人工神经网络对自由度进行建模,并采用模糊控制器对输入参数进行控制,以保持期望的自由度水平。理想情况下,控制器将减少纸浆游离度波动,以提高整体纸张质量和产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using RBF neural networks and a fuzzy logic controller to stabilize wood pulp freeness
The quality of paper produced in a papermaking process is largely dependent on the properties of the wood pulp used. One important property is pulp freeness. Ideally, a constant, predetermined level of freeness is desired to achieve the highest quality of paper possible. The focus of this paper is on developing a system to control the wood pulp freeness. A radial basis function (RBF) artificial neural network was used to model the freeness and a fuzzy logic controller was used to control the input parameters to maintain a desired level of freeness. Ideally, the controller will reduce pulp freeness fluctuations in order to improve overall paper sheet quality and production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信