船用玻璃钢构件耐火性能的计算分析。在船舶结构分析中的应用。

D. Di Capua, J. García, R. Pacheco, O. Casals, H. Tuula, A. Tissari, A. Korkealaakso
{"title":"船用玻璃钢构件耐火性能的计算分析。在船舶结构分析中的应用。","authors":"D. Di Capua, J. García, R. Pacheco, O. Casals, H. Tuula, A. Tissari, A. Korkealaakso","doi":"10.2218/marine2021.6789","DOIUrl":null,"url":null,"abstract":"This paper describes the research performed within the scope of H2020 project NICESHIP in the development of suitable thermo-mechanical framework to analyse composite structures under fire loads. The framework couples the thermo-mechanical model that is detailed in the paper with the Fire Dynamics Simulator (FDS) in order to obtain the adiabatic temperature needed as input for thermal model. The thermo-mechanical model uses the adiabatic temperature to estimate the temperature profile across the thickness of each quadrilateral shell element and also takes into account the pyrolysis effect. The composite constitutive model employed is the so-called Serial/Parallel Rule of Mixtures (SPROM) and has been modified to take into account the thermal expansion. Finally the thermo-mechanical model is validated against two literature tests and then the developed framework of fire collapse analysis is illustrated by a marine real application of a fire case scenario in the superstructure of a containership where steel and FRP divisions are analysed.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational analysis of resisting marine FRP divisions exposed to fire. Application to the analysis of ship structures.\",\"authors\":\"D. Di Capua, J. García, R. Pacheco, O. Casals, H. Tuula, A. Tissari, A. Korkealaakso\",\"doi\":\"10.2218/marine2021.6789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the research performed within the scope of H2020 project NICESHIP in the development of suitable thermo-mechanical framework to analyse composite structures under fire loads. The framework couples the thermo-mechanical model that is detailed in the paper with the Fire Dynamics Simulator (FDS) in order to obtain the adiabatic temperature needed as input for thermal model. The thermo-mechanical model uses the adiabatic temperature to estimate the temperature profile across the thickness of each quadrilateral shell element and also takes into account the pyrolysis effect. The composite constitutive model employed is the so-called Serial/Parallel Rule of Mixtures (SPROM) and has been modified to take into account the thermal expansion. Finally the thermo-mechanical model is validated against two literature tests and then the developed framework of fire collapse analysis is illustrated by a marine real application of a fire case scenario in the superstructure of a containership where steel and FRP divisions are analysed.\",\"PeriodicalId\":367395,\"journal\":{\"name\":\"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2218/marine2021.6789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2218/marine2021.6789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了在H2020项目NICESHIP范围内进行的研究,以开发合适的热机械框架来分析火灾载荷下的复合材料结构。该框架将本文详细介绍的热-力学模型与火焰动力学模拟器(FDS)耦合,以获得作为热模型输入所需的绝热温度。热-力学模型采用绝热温度来估计每个四边形壳单元厚度上的温度分布,并考虑热解效应。所采用的复合材料本构模型是所谓的串联/并行混合规则(SPROM),并进行了修改以考虑热膨胀。最后,根据两个文献测试验证了热力学模型,然后通过在集装箱船上部结构中火灾案例场景的海上实际应用来说明开发的火灾倒塌分析框架,其中分析了钢和FRP分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational analysis of resisting marine FRP divisions exposed to fire. Application to the analysis of ship structures.
This paper describes the research performed within the scope of H2020 project NICESHIP in the development of suitable thermo-mechanical framework to analyse composite structures under fire loads. The framework couples the thermo-mechanical model that is detailed in the paper with the Fire Dynamics Simulator (FDS) in order to obtain the adiabatic temperature needed as input for thermal model. The thermo-mechanical model uses the adiabatic temperature to estimate the temperature profile across the thickness of each quadrilateral shell element and also takes into account the pyrolysis effect. The composite constitutive model employed is the so-called Serial/Parallel Rule of Mixtures (SPROM) and has been modified to take into account the thermal expansion. Finally the thermo-mechanical model is validated against two literature tests and then the developed framework of fire collapse analysis is illustrated by a marine real application of a fire case scenario in the superstructure of a containership where steel and FRP divisions are analysed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信