基于深度展开的联合信道估计和混合波束形成

Kai Kang, Qiyu Hu, Yunlong Cai, Guanding Yu, J. Hoydis, Y. Eldar
{"title":"基于深度展开的联合信道估计和混合波束形成","authors":"Kai Kang, Qiyu Hu, Yunlong Cai, Guanding Yu, J. Hoydis, Y. Eldar","doi":"10.23919/eusipco55093.2022.9909602","DOIUrl":null,"url":null,"abstract":"In this work, we propose an end-to-end deep-unfolding neural network (NN) based joint channel estimation and hybrid beamforming (JCEHB) algorithm to maximize the sum rate in massive multiple-input multiple-output (MIMO) systems. Specifically, the recursive least-squares (RLS) and stochastic successive convex approximation (SSCA) algorithms are unfolded for channel estimation and hybrid beamforming, respectively. We consider a mixed-timescale scheme, where analog beamforming matrices are designed based on the channel state information (CSI) statistics once in each frame, while the digital beamforming matrices are designed at each time slot based on the equivalent CSI matrices. Simulation results show that the proposed algorithm can significantly outperform conventional algorithms.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Channel Estimation and Hybrid Beamforming via Deep-Unfolding\",\"authors\":\"Kai Kang, Qiyu Hu, Yunlong Cai, Guanding Yu, J. Hoydis, Y. Eldar\",\"doi\":\"10.23919/eusipco55093.2022.9909602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose an end-to-end deep-unfolding neural network (NN) based joint channel estimation and hybrid beamforming (JCEHB) algorithm to maximize the sum rate in massive multiple-input multiple-output (MIMO) systems. Specifically, the recursive least-squares (RLS) and stochastic successive convex approximation (SSCA) algorithms are unfolded for channel estimation and hybrid beamforming, respectively. We consider a mixed-timescale scheme, where analog beamforming matrices are designed based on the channel state information (CSI) statistics once in each frame, while the digital beamforming matrices are designed at each time slot based on the equivalent CSI matrices. Simulation results show that the proposed algorithm can significantly outperform conventional algorithms.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种基于端到端深度展开神经网络(NN)的联合信道估计和混合波束形成(JCEHB)算法,以最大化大规模多输入多输出(MIMO)系统中的和速率。具体地说,分别对信道估计和混合波束形成提出了递推最小二乘(RLS)和随机连续凸逼近(SSCA)算法。我们考虑了一种混合时标方案,其中模拟波束形成矩阵是基于每帧一次的信道状态信息(CSI)统计设计的,而数字波束形成矩阵是基于等效的CSI矩阵在每个时隙设计的。仿真结果表明,该算法明显优于传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Channel Estimation and Hybrid Beamforming via Deep-Unfolding
In this work, we propose an end-to-end deep-unfolding neural network (NN) based joint channel estimation and hybrid beamforming (JCEHB) algorithm to maximize the sum rate in massive multiple-input multiple-output (MIMO) systems. Specifically, the recursive least-squares (RLS) and stochastic successive convex approximation (SSCA) algorithms are unfolded for channel estimation and hybrid beamforming, respectively. We consider a mixed-timescale scheme, where analog beamforming matrices are designed based on the channel state information (CSI) statistics once in each frame, while the digital beamforming matrices are designed at each time slot based on the equivalent CSI matrices. Simulation results show that the proposed algorithm can significantly outperform conventional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信