利用不同先验信息的非平衡和平衡损失函数下的贝叶斯分析

I.N. Benatallah, H. Talhi, H. Aiachi, N. Khodja
{"title":"利用不同先验信息的非平衡和平衡损失函数下的贝叶斯分析","authors":"I.N. Benatallah, H. Talhi, H. Aiachi, N. Khodja","doi":"10.37418/amsj.12.2.1","DOIUrl":null,"url":null,"abstract":"In this paper, We perform a Bayesian analysis of Zeghdoudi distribution based on type II censored data. Using two type of loss functions; balanced and unbalanced loss functions, we use three different loss functions. this estimation includes three cases of prior informations; availability and lack of primary information, we obtain Bayes estimators and the corresponding posterior risks. the analytical forms of these estimators are out of reach, so, we propose Markov chain Monte-Carlo (MCMC) procedure. Moreover, given initial values for the parameters of the model,we obtain maximum likelihood estimators. Furthermore, we compare their performance with those of the Bayesian estimators using balanced and unbalanced loss functions.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BAYESIAN ANALYSIS UNDER UNBALANCED AND BALANCED LOSS FUNCTIONS APPLYING DIFFERENT PRIOR INFORMATIONS\",\"authors\":\"I.N. Benatallah, H. Talhi, H. Aiachi, N. Khodja\",\"doi\":\"10.37418/amsj.12.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, We perform a Bayesian analysis of Zeghdoudi distribution based on type II censored data. Using two type of loss functions; balanced and unbalanced loss functions, we use three different loss functions. this estimation includes three cases of prior informations; availability and lack of primary information, we obtain Bayes estimators and the corresponding posterior risks. the analytical forms of these estimators are out of reach, so, we propose Markov chain Monte-Carlo (MCMC) procedure. Moreover, given initial values for the parameters of the model,we obtain maximum likelihood estimators. Furthermore, we compare their performance with those of the Bayesian estimators using balanced and unbalanced loss functions.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对基于II型截尾数据的Zeghdoudi分布进行贝叶斯分析。采用两类损失函数;平衡和不平衡损失函数,我们使用三种不同的损失函数。该估计包括三种先验信息;得到贝叶斯估计量和相应的后验风险。由于这些估计量的解析形式难以达到,因此,我们提出了马尔可夫链蒙特卡罗(MCMC)方法。此外,给定模型参数的初始值,我们得到了极大似然估计。此外,我们将它们与使用平衡和非平衡损失函数的贝叶斯估计器的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BAYESIAN ANALYSIS UNDER UNBALANCED AND BALANCED LOSS FUNCTIONS APPLYING DIFFERENT PRIOR INFORMATIONS
In this paper, We perform a Bayesian analysis of Zeghdoudi distribution based on type II censored data. Using two type of loss functions; balanced and unbalanced loss functions, we use three different loss functions. this estimation includes three cases of prior informations; availability and lack of primary information, we obtain Bayes estimators and the corresponding posterior risks. the analytical forms of these estimators are out of reach, so, we propose Markov chain Monte-Carlo (MCMC) procedure. Moreover, given initial values for the parameters of the model,we obtain maximum likelihood estimators. Furthermore, we compare their performance with those of the Bayesian estimators using balanced and unbalanced loss functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信