特征表型:对表现型发现的算法框架

Alexander Vaughan, Rahul Singh, Ilmi Yoon, M. Fuse
{"title":"特征表型:对表现型发现的算法框架","authors":"Alexander Vaughan, Rahul Singh, Ilmi Yoon, M. Fuse","doi":"10.1109/CSBW.2005.60","DOIUrl":null,"url":null,"abstract":"Studying the genetic control of molecular, anatomical and/or morphological phenotypes in model organisms is a powerful tool in the functional analysis of a gene. The goal of our research is to develop algorithms that discover phenotypes of behavior in model organisms, which may identify, categorize, and quantify these phenotypes under conditions of minimal a priori information. Starting from a non-invasive video monitoring of a model organism, we propose an eigen-decomposition of the organism's behavior captured in video. Traditional clustering techniques in space, time, and frequency can utilize this decomposition to characterize the categorical behaviors of an animal, and for an analysis of the behavioral repertoire. This supplies a quantified analysis of behavior with minimal assumptions, a crucial first step in the genetic analysis of behavior.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Eigenphenotypes: towards an algorithmic framework for phenotype discovery\",\"authors\":\"Alexander Vaughan, Rahul Singh, Ilmi Yoon, M. Fuse\",\"doi\":\"10.1109/CSBW.2005.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying the genetic control of molecular, anatomical and/or morphological phenotypes in model organisms is a powerful tool in the functional analysis of a gene. The goal of our research is to develop algorithms that discover phenotypes of behavior in model organisms, which may identify, categorize, and quantify these phenotypes under conditions of minimal a priori information. Starting from a non-invasive video monitoring of a model organism, we propose an eigen-decomposition of the organism's behavior captured in video. Traditional clustering techniques in space, time, and frequency can utilize this decomposition to characterize the categorical behaviors of an animal, and for an analysis of the behavioral repertoire. This supplies a quantified analysis of behavior with minimal assumptions, a crucial first step in the genetic analysis of behavior.\",\"PeriodicalId\":123531,\"journal\":{\"name\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSBW.2005.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究模式生物分子、解剖和/或形态表型的遗传控制是基因功能分析的有力工具。我们的研究目标是开发算法来发现模式生物的行为表型,这些算法可以在最小先验信息的条件下识别、分类和量化这些表型。从模型生物的非侵入性视频监控开始,我们提出了视频中捕获的生物行为的特征分解。传统的空间、时间和频率聚类技术可以利用这种分解来表征动物的分类行为,并对行为库进行分析。这提供了一种以最小假设对行为进行量化分析的方法,这是行为遗传分析中至关重要的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenphenotypes: towards an algorithmic framework for phenotype discovery
Studying the genetic control of molecular, anatomical and/or morphological phenotypes in model organisms is a powerful tool in the functional analysis of a gene. The goal of our research is to develop algorithms that discover phenotypes of behavior in model organisms, which may identify, categorize, and quantify these phenotypes under conditions of minimal a priori information. Starting from a non-invasive video monitoring of a model organism, we propose an eigen-decomposition of the organism's behavior captured in video. Traditional clustering techniques in space, time, and frequency can utilize this decomposition to characterize the categorical behaviors of an animal, and for an analysis of the behavioral repertoire. This supplies a quantified analysis of behavior with minimal assumptions, a crucial first step in the genetic analysis of behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信