Alexander Vaughan, Rahul Singh, Ilmi Yoon, M. Fuse
{"title":"特征表型:对表现型发现的算法框架","authors":"Alexander Vaughan, Rahul Singh, Ilmi Yoon, M. Fuse","doi":"10.1109/CSBW.2005.60","DOIUrl":null,"url":null,"abstract":"Studying the genetic control of molecular, anatomical and/or morphological phenotypes in model organisms is a powerful tool in the functional analysis of a gene. The goal of our research is to develop algorithms that discover phenotypes of behavior in model organisms, which may identify, categorize, and quantify these phenotypes under conditions of minimal a priori information. Starting from a non-invasive video monitoring of a model organism, we propose an eigen-decomposition of the organism's behavior captured in video. Traditional clustering techniques in space, time, and frequency can utilize this decomposition to characterize the categorical behaviors of an animal, and for an analysis of the behavioral repertoire. This supplies a quantified analysis of behavior with minimal assumptions, a crucial first step in the genetic analysis of behavior.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Eigenphenotypes: towards an algorithmic framework for phenotype discovery\",\"authors\":\"Alexander Vaughan, Rahul Singh, Ilmi Yoon, M. Fuse\",\"doi\":\"10.1109/CSBW.2005.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying the genetic control of molecular, anatomical and/or morphological phenotypes in model organisms is a powerful tool in the functional analysis of a gene. The goal of our research is to develop algorithms that discover phenotypes of behavior in model organisms, which may identify, categorize, and quantify these phenotypes under conditions of minimal a priori information. Starting from a non-invasive video monitoring of a model organism, we propose an eigen-decomposition of the organism's behavior captured in video. Traditional clustering techniques in space, time, and frequency can utilize this decomposition to characterize the categorical behaviors of an animal, and for an analysis of the behavioral repertoire. This supplies a quantified analysis of behavior with minimal assumptions, a crucial first step in the genetic analysis of behavior.\",\"PeriodicalId\":123531,\"journal\":{\"name\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSBW.2005.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eigenphenotypes: towards an algorithmic framework for phenotype discovery
Studying the genetic control of molecular, anatomical and/or morphological phenotypes in model organisms is a powerful tool in the functional analysis of a gene. The goal of our research is to develop algorithms that discover phenotypes of behavior in model organisms, which may identify, categorize, and quantify these phenotypes under conditions of minimal a priori information. Starting from a non-invasive video monitoring of a model organism, we propose an eigen-decomposition of the organism's behavior captured in video. Traditional clustering techniques in space, time, and frequency can utilize this decomposition to characterize the categorical behaviors of an animal, and for an analysis of the behavioral repertoire. This supplies a quantified analysis of behavior with minimal assumptions, a crucial first step in the genetic analysis of behavior.