模糊学习的遗传方法

M. Russo
{"title":"模糊学习的遗传方法","authors":"M. Russo","doi":"10.1109/ISNFS.1996.603814","DOIUrl":null,"url":null,"abstract":"The approach proposed allows supervised approximation of multi-input/multi-output (MIMO) systems. Typically a small number of fuzzy rules are produced. The learning capacity is considerable, as is shown by the numerous applications developed. The paper gives a significant example of how the fuzzy models developed are generally better than those to be found in recent literature concerning both the approximation capability and simplicity.","PeriodicalId":187481,"journal":{"name":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","volume":"244 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A genetic approach to fuzzy learning\",\"authors\":\"M. Russo\",\"doi\":\"10.1109/ISNFS.1996.603814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The approach proposed allows supervised approximation of multi-input/multi-output (MIMO) systems. Typically a small number of fuzzy rules are produced. The learning capacity is considerable, as is shown by the numerous applications developed. The paper gives a significant example of how the fuzzy models developed are generally better than those to be found in recent literature concerning both the approximation capability and simplicity.\",\"PeriodicalId\":187481,\"journal\":{\"name\":\"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report\",\"volume\":\"244 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNFS.1996.603814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNFS.1996.603814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出的方法允许多输入/多输出(MIMO)系统的监督逼近。通常会产生少量的模糊规则。学习能力是相当可观的,正如开发的许多应用程序所显示的那样。本文给出了一个重要的例子,说明所开发的模糊模型在近似能力和简单性方面通常优于最近文献中发现的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic approach to fuzzy learning
The approach proposed allows supervised approximation of multi-input/multi-output (MIMO) systems. Typically a small number of fuzzy rules are produced. The learning capacity is considerable, as is shown by the numerous applications developed. The paper gives a significant example of how the fuzzy models developed are generally better than those to be found in recent literature concerning both the approximation capability and simplicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信