{"title":"未标记神经元对自组织图影响的研究","authors":"Willem S. van Heerden, A. Engelbrecht","doi":"10.1109/SSCI.2016.7849938","DOIUrl":null,"url":null,"abstract":"Self-Organizing Maps (SOMs) are unsupervised neural networks that build data models. Neuron labeling attaches descriptive textual labels to the neurons making up a SOM, and is an important component of SOM-based exploratory data analysis (EDA) and data mining (DM). Several neuron labeling approaches tend to leave some neurons unlabeled. The interaction between unlabeled neurons and SOM model accuracy affect the choice of labeling algorithm for SOM-based EDA and DM, but has not been previously investigated. This paper applies the widely used example-centric neuron labeling algorithm to several classification problems, and empirically investigates the relationship between the percentage of neurons left unlabeled and classification accuracy. Practical recommendations are also presented, which address the treatment of unlabeled neurons and the selection of an appropriate neuron labeling algorithm.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation into the effect of unlabeled neurons on Self-Organizing Maps\",\"authors\":\"Willem S. van Heerden, A. Engelbrecht\",\"doi\":\"10.1109/SSCI.2016.7849938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-Organizing Maps (SOMs) are unsupervised neural networks that build data models. Neuron labeling attaches descriptive textual labels to the neurons making up a SOM, and is an important component of SOM-based exploratory data analysis (EDA) and data mining (DM). Several neuron labeling approaches tend to leave some neurons unlabeled. The interaction between unlabeled neurons and SOM model accuracy affect the choice of labeling algorithm for SOM-based EDA and DM, but has not been previously investigated. This paper applies the widely used example-centric neuron labeling algorithm to several classification problems, and empirically investigates the relationship between the percentage of neurons left unlabeled and classification accuracy. Practical recommendations are also presented, which address the treatment of unlabeled neurons and the selection of an appropriate neuron labeling algorithm.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7849938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7849938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An investigation into the effect of unlabeled neurons on Self-Organizing Maps
Self-Organizing Maps (SOMs) are unsupervised neural networks that build data models. Neuron labeling attaches descriptive textual labels to the neurons making up a SOM, and is an important component of SOM-based exploratory data analysis (EDA) and data mining (DM). Several neuron labeling approaches tend to leave some neurons unlabeled. The interaction between unlabeled neurons and SOM model accuracy affect the choice of labeling algorithm for SOM-based EDA and DM, but has not been previously investigated. This paper applies the widely used example-centric neuron labeling algorithm to several classification problems, and empirically investigates the relationship between the percentage of neurons left unlabeled and classification accuracy. Practical recommendations are also presented, which address the treatment of unlabeled neurons and the selection of an appropriate neuron labeling algorithm.