语音样本识别语音障碍

Jagadish Nayak, P. S. Bhat
{"title":"语音样本识别语音障碍","authors":"Jagadish Nayak, P. S. Bhat","doi":"10.1109/TENCON.2003.1273387","DOIUrl":null,"url":null,"abstract":"This paper attempts to identify pathological disorders of larynx using wavelet analysis. Speech samples carry symptoms of disorder in the place of their origin. The speech signal is subjected to wavelet analysis, and the coefficients are used to identify disorders such as vocal fold paralysis. Multilayer artificial neural network is used for classification of normal and affected signals.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"49 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Identification of voice disorders using speech samples\",\"authors\":\"Jagadish Nayak, P. S. Bhat\",\"doi\":\"10.1109/TENCON.2003.1273387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper attempts to identify pathological disorders of larynx using wavelet analysis. Speech samples carry symptoms of disorder in the place of their origin. The speech signal is subjected to wavelet analysis, and the coefficients are used to identify disorders such as vocal fold paralysis. Multilayer artificial neural network is used for classification of normal and affected signals.\",\"PeriodicalId\":405847,\"journal\":{\"name\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"volume\":\"49 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2003.1273387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文尝试用小波分析来鉴别喉部的病理病变。言语样本在其来源的地方带有紊乱的症状。对语音信号进行小波分析,利用小波系数识别声带麻痹等疾病。采用多层人工神经网络对正常信号和受影响信号进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of voice disorders using speech samples
This paper attempts to identify pathological disorders of larynx using wavelet analysis. Speech samples carry symptoms of disorder in the place of their origin. The speech signal is subjected to wavelet analysis, and the coefficients are used to identify disorders such as vocal fold paralysis. Multilayer artificial neural network is used for classification of normal and affected signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信