基于细菌进化算法的匈牙利语词情感插值特征选择

Bálint Tamás Rozgonyi, Natabara Máté Gyöngyössy, Beáta Korcsok, J. Botzheim
{"title":"基于细菌进化算法的匈牙利语词情感插值特征选择","authors":"Bálint Tamás Rozgonyi, Natabara Máté Gyöngyössy, Beáta Korcsok, J. Botzheim","doi":"10.1109/CINTI53070.2021.9668426","DOIUrl":null,"url":null,"abstract":"With the advancement of social artificial agents the need for correct understanding of sentiment is growing. In this paper we propose a method for building a context-less word-level emotional model of words in the Hungarian language based on Russell's Circumpex model of affect. By utilizing Bacterial Evo-lutionary Algorithm for feature selection, a method for efficient web-based annotation is proposed. Using the latent information of word embeddings multi-layer perceptron networks are trained to realize an interpolative function of two-dimensional emotion vectors over the embedding space. Dimensionality reduction via correlation analysis is also discussed.","PeriodicalId":340545,"journal":{"name":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial Evolutionary Algorithm-based Feature Selection for Word Sentiment Interpolation in Hungarian Language\",\"authors\":\"Bálint Tamás Rozgonyi, Natabara Máté Gyöngyössy, Beáta Korcsok, J. Botzheim\",\"doi\":\"10.1109/CINTI53070.2021.9668426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of social artificial agents the need for correct understanding of sentiment is growing. In this paper we propose a method for building a context-less word-level emotional model of words in the Hungarian language based on Russell's Circumpex model of affect. By utilizing Bacterial Evo-lutionary Algorithm for feature selection, a method for efficient web-based annotation is proposed. Using the latent information of word embeddings multi-layer perceptron networks are trained to realize an interpolative function of two-dimensional emotion vectors over the embedding space. Dimensionality reduction via correlation analysis is also discussed.\",\"PeriodicalId\":340545,\"journal\":{\"name\":\"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI53070.2021.9668426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI53070.2021.9668426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着社会人工智能的发展,对情感正确理解的需求越来越大。在本文中,我们提出了一种基于Russell的Circumpex情感模型构建匈牙利语中无上下文词级情感模型的方法。利用细菌进化算法进行特征选择,提出了一种高效的基于web的标注方法。利用词嵌入的潜在信息训练多层感知器网络,实现二维情感向量在嵌入空间上的插值函数。并讨论了相关分析的降维方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacterial Evolutionary Algorithm-based Feature Selection for Word Sentiment Interpolation in Hungarian Language
With the advancement of social artificial agents the need for correct understanding of sentiment is growing. In this paper we propose a method for building a context-less word-level emotional model of words in the Hungarian language based on Russell's Circumpex model of affect. By utilizing Bacterial Evo-lutionary Algorithm for feature selection, a method for efficient web-based annotation is proposed. Using the latent information of word embeddings multi-layer perceptron networks are trained to realize an interpolative function of two-dimensional emotion vectors over the embedding space. Dimensionality reduction via correlation analysis is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信