鲁棒发展性神经网络的进化

Alan N. Hampton, C. Adami
{"title":"鲁棒发展性神经网络的进化","authors":"Alan N. Hampton, C. Adami","doi":"10.7551/mitpress/1429.003.0074","DOIUrl":null,"url":null,"abstract":"We present the first evolved solutions to a computational task within the Neuronal Organism Evolution model (Norgev) of artificial neural network development. These networks display a remarkable robustness to external noise sources, and can regrow to functionality when severely damaged. In this framework, we evolved a doubling of network functionality (double-NAND circuit). The network structure of these evolved solutions does not follow the logic of human coding, and instead more resembles the decentralized dendritic connection pattern of more biological networks such as the 'C. elegans' brain.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Evolution of Robust Developmental Neural Networks\",\"authors\":\"Alan N. Hampton, C. Adami\",\"doi\":\"10.7551/mitpress/1429.003.0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first evolved solutions to a computational task within the Neuronal Organism Evolution model (Norgev) of artificial neural network development. These networks display a remarkable robustness to external noise sources, and can regrow to functionality when severely damaged. In this framework, we evolved a doubling of network functionality (double-NAND circuit). The network structure of these evolved solutions does not follow the logic of human coding, and instead more resembles the decentralized dendritic connection pattern of more biological networks such as the 'C. elegans' brain.\",\"PeriodicalId\":139082,\"journal\":{\"name\":\"arXiv: Adaptation and Self-Organizing Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7551/mitpress/1429.003.0074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7551/mitpress/1429.003.0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们提出了人工神经网络发展的神经元生物进化模型(Norgev)中计算任务的第一个进化解决方案。这些网络对外部噪声源表现出显著的鲁棒性,并且在严重损坏时可以重新恢复功能。在这个框架中,我们发展了加倍的网络功能(双nand电路)。这些进化解决方案的网络结构并不遵循人类编码的逻辑,而是更类似于更多生物网络(如秀丽隐杆线虫的大脑)的分散树突连接模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of Robust Developmental Neural Networks
We present the first evolved solutions to a computational task within the Neuronal Organism Evolution model (Norgev) of artificial neural network development. These networks display a remarkable robustness to external noise sources, and can regrow to functionality when severely damaged. In this framework, we evolved a doubling of network functionality (double-NAND circuit). The network structure of these evolved solutions does not follow the logic of human coding, and instead more resembles the decentralized dendritic connection pattern of more biological networks such as the 'C. elegans' brain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信