泽维尔医生:对医患对话和XAI评估的可解释诊断

Hillary Ngai, Frank Rudzicz
{"title":"泽维尔医生:对医患对话和XAI评估的可解释诊断","authors":"Hillary Ngai, Frank Rudzicz","doi":"10.48550/arXiv.2204.10178","DOIUrl":null,"url":null,"abstract":"We introduce Doctor XAvIer — a BERT-based diagnostic system that extracts relevant clinical data from transcribed patient-doctor dialogues and explains predictions using feature attribution methods. We present a novel performance plot and evaluation metric for feature attribution methods — Feature Attribution Dropping (FAD) curve and its Normalized Area Under the Curve (N-AUC). FAD curve analysis shows that integrated gradients outperforms Shapley values in explaining diagnosis classification. Doctor XAvIer outperforms the baseline with 0.97 F1-score in named entity recognition and symptom pertinence classification and 0.91 F1-score in diagnosis classification.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Doctor XAvIer: Explainable Diagnosis on Physician-Patient Dialogues and XAI Evaluation\",\"authors\":\"Hillary Ngai, Frank Rudzicz\",\"doi\":\"10.48550/arXiv.2204.10178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Doctor XAvIer — a BERT-based diagnostic system that extracts relevant clinical data from transcribed patient-doctor dialogues and explains predictions using feature attribution methods. We present a novel performance plot and evaluation metric for feature attribution methods — Feature Attribution Dropping (FAD) curve and its Normalized Area Under the Curve (N-AUC). FAD curve analysis shows that integrated gradients outperforms Shapley values in explaining diagnosis classification. Doctor XAvIer outperforms the baseline with 0.97 F1-score in named entity recognition and symptom pertinence classification and 0.91 F1-score in diagnosis classification.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.10178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.10178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们介绍了医生XAvIer -一个基于bert的诊断系统,从转录的患者-医生对话中提取相关临床数据,并使用特征归因方法解释预测。提出了一种新的特征归因方法性能图和评价指标——特征归因下降曲线及其归一化曲线下面积(N-AUC)。FAD曲线分析表明,综合梯度在解释诊断分类方面优于Shapley值。dr . XAvIer在命名实体识别和症状针对性分类上优于基线得分0.97 f1,在诊断分类上优于基线得分0.91 f1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Doctor XAvIer: Explainable Diagnosis on Physician-Patient Dialogues and XAI Evaluation
We introduce Doctor XAvIer — a BERT-based diagnostic system that extracts relevant clinical data from transcribed patient-doctor dialogues and explains predictions using feature attribution methods. We present a novel performance plot and evaluation metric for feature attribution methods — Feature Attribution Dropping (FAD) curve and its Normalized Area Under the Curve (N-AUC). FAD curve analysis shows that integrated gradients outperforms Shapley values in explaining diagnosis classification. Doctor XAvIer outperforms the baseline with 0.97 F1-score in named entity recognition and symptom pertinence classification and 0.91 F1-score in diagnosis classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信