波体相互作用线性问题的唯一性判据

O. Motygin, P. Mciver
{"title":"波体相互作用线性问题的唯一性判据","authors":"O. Motygin, P. Mciver","doi":"10.1109/DD.2000.902363","DOIUrl":null,"url":null,"abstract":"The question of uniqueness for problems describing the interaction of submerged bodies with an ideal unbound fluid is far from resolution. In the present work a new criterion of uniqueness is suggested based on Green's integral identity and the maximum principle for elliptic differential equations. The criterion is formulated as an inequality involving integrals of the Green's function over bodies' wetted contours, and when being satisfied guarantees uniqueness of the problem. This criterion is quite general and applicable for any number of bodies of arbitrary shape (satisfying the exterior sphere condition) and in any dimension.","PeriodicalId":184684,"journal":{"name":"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)","volume":"421 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A uniqueness criterion for linear problems of wave-body interaction\",\"authors\":\"O. Motygin, P. Mciver\",\"doi\":\"10.1109/DD.2000.902363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The question of uniqueness for problems describing the interaction of submerged bodies with an ideal unbound fluid is far from resolution. In the present work a new criterion of uniqueness is suggested based on Green's integral identity and the maximum principle for elliptic differential equations. The criterion is formulated as an inequality involving integrals of the Green's function over bodies' wetted contours, and when being satisfied guarantees uniqueness of the problem. This criterion is quite general and applicable for any number of bodies of arbitrary shape (satisfying the exterior sphere condition) and in any dimension.\",\"PeriodicalId\":184684,\"journal\":{\"name\":\"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)\",\"volume\":\"421 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD.2000.902363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2000.902363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

描述浸没体与理想非束缚流体相互作用问题的唯一性问题远未得到解决。本文基于格林积分恒等式和极大值原理,提出了椭圆型微分方程的唯一性判据。该准则被表述为一个不等式,它涉及格林函数在物体湿润轮廓上的积分,当满足时保证了问题的唯一性。这个准则是非常普遍的,适用于任意数量的任意形状的物体(满足外球面条件)和任何维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A uniqueness criterion for linear problems of wave-body interaction
The question of uniqueness for problems describing the interaction of submerged bodies with an ideal unbound fluid is far from resolution. In the present work a new criterion of uniqueness is suggested based on Green's integral identity and the maximum principle for elliptic differential equations. The criterion is formulated as an inequality involving integrals of the Green's function over bodies' wetted contours, and when being satisfied guarantees uniqueness of the problem. This criterion is quite general and applicable for any number of bodies of arbitrary shape (satisfying the exterior sphere condition) and in any dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信