物联网系统中自适应阈值干扰抑制方法

Natthanan Promsuk, A. Taparugssanagorn, J. Vartiainen
{"title":"物联网系统中自适应阈值干扰抑制方法","authors":"Natthanan Promsuk, A. Taparugssanagorn, J. Vartiainen","doi":"10.1109/ICITEED.2017.8250435","DOIUrl":null,"url":null,"abstract":"The explosive growth in home, wearable, and wireless devices has not been matched by the growth in radio spectrum bands to accommodate them. The inter-networking of all of these devices known as “the internet of things (IoT)” is expected to have tens of billions of devices, mostly wireless, definitely incurring a coexistence or interference problem. The ubiquitous industrial, scientific and medical (ISM) radio band at 2.4GHz, in particular, one of the candidate band for IoT is heavily oversubscribed due to its unlicensed nature and could become all but unusable for priority systems in a densely populated area in the future at the present rate of growth of 2.4GHz transmitters and networks. In our study, the communications of the “last 100 meters” of an IoT network, i.e., from devices to an access point (AP) are considered. The interference suppression algorithms using the probability of false alarm PFA based methods, i.e., the Neyman-Pearson (NP) criterion and the localization algorithm based on double-thresholding (LAD) are applied to enhance the transmission bit error rate (BER) performances in various scenarios. Besides the traditional fixed threshold approach, an adaptive threshold approaches are proposed to enhance the performances in frequency selective fading channels. The simulation results show that the proposed methods excellently work even in an IoT network, which contains a large number of devices.","PeriodicalId":267403,"journal":{"name":"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interference suppression methods with adaptive threshold in Internet of Things (IoT) systems\",\"authors\":\"Natthanan Promsuk, A. Taparugssanagorn, J. Vartiainen\",\"doi\":\"10.1109/ICITEED.2017.8250435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explosive growth in home, wearable, and wireless devices has not been matched by the growth in radio spectrum bands to accommodate them. The inter-networking of all of these devices known as “the internet of things (IoT)” is expected to have tens of billions of devices, mostly wireless, definitely incurring a coexistence or interference problem. The ubiquitous industrial, scientific and medical (ISM) radio band at 2.4GHz, in particular, one of the candidate band for IoT is heavily oversubscribed due to its unlicensed nature and could become all but unusable for priority systems in a densely populated area in the future at the present rate of growth of 2.4GHz transmitters and networks. In our study, the communications of the “last 100 meters” of an IoT network, i.e., from devices to an access point (AP) are considered. The interference suppression algorithms using the probability of false alarm PFA based methods, i.e., the Neyman-Pearson (NP) criterion and the localization algorithm based on double-thresholding (LAD) are applied to enhance the transmission bit error rate (BER) performances in various scenarios. Besides the traditional fixed threshold approach, an adaptive threshold approaches are proposed to enhance the performances in frequency selective fading channels. The simulation results show that the proposed methods excellently work even in an IoT network, which contains a large number of devices.\",\"PeriodicalId\":267403,\"journal\":{\"name\":\"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEED.2017.8250435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2017.8250435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

家用、可穿戴和无线设备的爆炸式增长并没有跟上无线电频段的增长,以适应它们。所有这些设备的互联网络被称为“物联网(IoT)”,预计将有数百亿台设备,其中大部分是无线设备,肯定会产生共存或干扰问题。2.4GHz无处不在的工业、科学和医疗(ISM)无线电频段,特别是物联网的候选频段之一,由于其未经许可的性质,严重超额认购,按照目前2.4GHz发射机和网络的增长速度,未来可能无法用于人口稠密地区的优先系统。在我们的研究中,考虑了物联网网络“最后100米”的通信,即从设备到接入点(AP)。采用基于虚警概率PFA方法的干扰抑制算法,即Neyman-Pearson (NP)准则和基于双阈值(LAD)的定位算法,在各种场景下提高传输误码率(BER)性能。除了传统的固定阈值方法外,还提出了一种自适应阈值方法来提高频率选择性衰落信道的性能。仿真结果表明,即使在包含大量设备的物联网网络中,所提出的方法也能很好地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interference suppression methods with adaptive threshold in Internet of Things (IoT) systems
The explosive growth in home, wearable, and wireless devices has not been matched by the growth in radio spectrum bands to accommodate them. The inter-networking of all of these devices known as “the internet of things (IoT)” is expected to have tens of billions of devices, mostly wireless, definitely incurring a coexistence or interference problem. The ubiquitous industrial, scientific and medical (ISM) radio band at 2.4GHz, in particular, one of the candidate band for IoT is heavily oversubscribed due to its unlicensed nature and could become all but unusable for priority systems in a densely populated area in the future at the present rate of growth of 2.4GHz transmitters and networks. In our study, the communications of the “last 100 meters” of an IoT network, i.e., from devices to an access point (AP) are considered. The interference suppression algorithms using the probability of false alarm PFA based methods, i.e., the Neyman-Pearson (NP) criterion and the localization algorithm based on double-thresholding (LAD) are applied to enhance the transmission bit error rate (BER) performances in various scenarios. Besides the traditional fixed threshold approach, an adaptive threshold approaches are proposed to enhance the performances in frequency selective fading channels. The simulation results show that the proposed methods excellently work even in an IoT network, which contains a large number of devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信