{"title":"滑雪椅升降机握把部件的锻造圈","authors":"","doi":"10.31399/asm.fach.process.c0089256","DOIUrl":null,"url":null,"abstract":"\n Alloy steel forgings used as structural members of a ski chair lift grip mechanism were identified to have contained forging laps (i.e., sharp-notched discontinuities) during an annual magnetic particle inspection of all chair lift grip structural members at a mountain resort. The material was confirmed to be 34Cr-Ni-Mo6. A heavy oxide on the dark area of one of the broken-open laps was revealed by scanning electron microscopy in conjunction with EDS. A bright area that contained ductile dimple rupture was observed adjacent to the dark area. The oxidized portion of the fracture was established to be the preexisting forging lap while the bright area was created during the breaking-open process. As a corrective action all forgings showing laps were recommended to be removed from service. Critical review and revision of the forging process and revisions to the nondestructive evaluation procedures at the forging supplier was recommended.","PeriodicalId":294593,"journal":{"name":"ASM Failure Analysis Case Histories: Processing Errors and Defects","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forging Laps in Ski Chair Lift Grip Components\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.process.c0089256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Alloy steel forgings used as structural members of a ski chair lift grip mechanism were identified to have contained forging laps (i.e., sharp-notched discontinuities) during an annual magnetic particle inspection of all chair lift grip structural members at a mountain resort. The material was confirmed to be 34Cr-Ni-Mo6. A heavy oxide on the dark area of one of the broken-open laps was revealed by scanning electron microscopy in conjunction with EDS. A bright area that contained ductile dimple rupture was observed adjacent to the dark area. The oxidized portion of the fracture was established to be the preexisting forging lap while the bright area was created during the breaking-open process. As a corrective action all forgings showing laps were recommended to be removed from service. Critical review and revision of the forging process and revisions to the nondestructive evaluation procedures at the forging supplier was recommended.\",\"PeriodicalId\":294593,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Processing Errors and Defects\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Processing Errors and Defects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.process.c0089256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Processing Errors and Defects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.process.c0089256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alloy steel forgings used as structural members of a ski chair lift grip mechanism were identified to have contained forging laps (i.e., sharp-notched discontinuities) during an annual magnetic particle inspection of all chair lift grip structural members at a mountain resort. The material was confirmed to be 34Cr-Ni-Mo6. A heavy oxide on the dark area of one of the broken-open laps was revealed by scanning electron microscopy in conjunction with EDS. A bright area that contained ductile dimple rupture was observed adjacent to the dark area. The oxidized portion of the fracture was established to be the preexisting forging lap while the bright area was created during the breaking-open process. As a corrective action all forgings showing laps were recommended to be removed from service. Critical review and revision of the forging process and revisions to the nondestructive evaluation procedures at the forging supplier was recommended.