{"title":"基于fpga的非线性永磁同步电机实时仿真电力半实物仿真系统","authors":"A. Schmitt, Jan Richter, Uli Jurkewitz, M. Braun","doi":"10.1109/IECON.2014.7049060","DOIUrl":null,"url":null,"abstract":"This paper presents an FPGA-based real-time simulation system of a nonlinear permanent magnet synchronous machine and its qualification for power hardware-in-the-loop emulation systems. The machine model considers the magnetic anisotropy of the rotor, the saturation of the iron as well as dynamic cross-coupling effects between the direct- and quadrature axis of the machine. A specifically designed high performance signal processing system is developed to calculate the machine behavior with a frequency of 1.5 MHz. The developed model calculates the state variables of the machine as well as the counter voltage for an emulation converter in a way that the coupling network of the power hardware-in-the-loop emulation test bench could be equipped with any inductance. Measurements validate the proper function of the machine model and demonstrate the accurate solution of the nonlinear differential equation system of an anisotropie synchronous machine with nonlinear magnetics in real-time.","PeriodicalId":228897,"journal":{"name":"IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"FPGA-based real-time simulation of nonlinear permanent magnet synchronous machines for power hardware-in-the-loop emulation systems\",\"authors\":\"A. Schmitt, Jan Richter, Uli Jurkewitz, M. Braun\",\"doi\":\"10.1109/IECON.2014.7049060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an FPGA-based real-time simulation system of a nonlinear permanent magnet synchronous machine and its qualification for power hardware-in-the-loop emulation systems. The machine model considers the magnetic anisotropy of the rotor, the saturation of the iron as well as dynamic cross-coupling effects between the direct- and quadrature axis of the machine. A specifically designed high performance signal processing system is developed to calculate the machine behavior with a frequency of 1.5 MHz. The developed model calculates the state variables of the machine as well as the counter voltage for an emulation converter in a way that the coupling network of the power hardware-in-the-loop emulation test bench could be equipped with any inductance. Measurements validate the proper function of the machine model and demonstrate the accurate solution of the nonlinear differential equation system of an anisotropie synchronous machine with nonlinear magnetics in real-time.\",\"PeriodicalId\":228897,\"journal\":{\"name\":\"IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2014.7049060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2014.7049060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FPGA-based real-time simulation of nonlinear permanent magnet synchronous machines for power hardware-in-the-loop emulation systems
This paper presents an FPGA-based real-time simulation system of a nonlinear permanent magnet synchronous machine and its qualification for power hardware-in-the-loop emulation systems. The machine model considers the magnetic anisotropy of the rotor, the saturation of the iron as well as dynamic cross-coupling effects between the direct- and quadrature axis of the machine. A specifically designed high performance signal processing system is developed to calculate the machine behavior with a frequency of 1.5 MHz. The developed model calculates the state variables of the machine as well as the counter voltage for an emulation converter in a way that the coupling network of the power hardware-in-the-loop emulation test bench could be equipped with any inductance. Measurements validate the proper function of the machine model and demonstrate the accurate solution of the nonlinear differential equation system of an anisotropie synchronous machine with nonlinear magnetics in real-time.