{"title":"纳米zsm -5沸石的液相沉积改性及其对己烯-1芳构化的催化性能","authors":"Yujun Fang, X. Su, W. Wang, Wei Wu","doi":"10.24294/can.v4i1.1330","DOIUrl":null,"url":null,"abstract":"The Olefin aromatization is an important method for the upgrade of catalytic cracking (FCC) gasoline and production of fuel oil with high octane number. The nano-ZSM-5 zeolite was synthesized via a seed-induced method, a series of modified nano-ZSM-5 zeolite samples with different Ga deposition amount were prepared by Ga liquid deposition method. The XRD, N2 physical adsorption, SEM, TEM, XPS, H2-TPR and Py-IR measurements were used to characterize the morphology, textural properties and acidity of the modified ZSM-5 zeolites. The catalytic performance of the Hexene-1 aromatization was evaluated on a fixed-bed microreactor. The effects of Ga modification on the physicochemical and catalytic performance of nano-ZSM-5 zeolites were investigated. The Ga species in the modified nano-ZSM-5 zeolites mainly exist as the form of Ga2O3 and GaO+, which provide strong Lewis acid sites. The aromatics selectivity over Ga modified nano-ZSM-5 zeolite in the Hexene-1 aromatization was significantly increased, which could be attributed to the improvement of the dehydrogenation activity. The selectivity for aromatics over the Ga4.2/NZ5 catalyst with suitable Ga deposition amount reached 55.4%.","PeriodicalId":331072,"journal":{"name":"Characterization and Application of Nanomaterials","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid deposition modification of nano-ZSM-5 zeolite and catalytic performance in aromatization of Hexene-1\",\"authors\":\"Yujun Fang, X. Su, W. Wang, Wei Wu\",\"doi\":\"10.24294/can.v4i1.1330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Olefin aromatization is an important method for the upgrade of catalytic cracking (FCC) gasoline and production of fuel oil with high octane number. The nano-ZSM-5 zeolite was synthesized via a seed-induced method, a series of modified nano-ZSM-5 zeolite samples with different Ga deposition amount were prepared by Ga liquid deposition method. The XRD, N2 physical adsorption, SEM, TEM, XPS, H2-TPR and Py-IR measurements were used to characterize the morphology, textural properties and acidity of the modified ZSM-5 zeolites. The catalytic performance of the Hexene-1 aromatization was evaluated on a fixed-bed microreactor. The effects of Ga modification on the physicochemical and catalytic performance of nano-ZSM-5 zeolites were investigated. The Ga species in the modified nano-ZSM-5 zeolites mainly exist as the form of Ga2O3 and GaO+, which provide strong Lewis acid sites. The aromatics selectivity over Ga modified nano-ZSM-5 zeolite in the Hexene-1 aromatization was significantly increased, which could be attributed to the improvement of the dehydrogenation activity. The selectivity for aromatics over the Ga4.2/NZ5 catalyst with suitable Ga deposition amount reached 55.4%.\",\"PeriodicalId\":331072,\"journal\":{\"name\":\"Characterization and Application of Nanomaterials\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Characterization and Application of Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/can.v4i1.1330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Characterization and Application of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/can.v4i1.1330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Liquid deposition modification of nano-ZSM-5 zeolite and catalytic performance in aromatization of Hexene-1
The Olefin aromatization is an important method for the upgrade of catalytic cracking (FCC) gasoline and production of fuel oil with high octane number. The nano-ZSM-5 zeolite was synthesized via a seed-induced method, a series of modified nano-ZSM-5 zeolite samples with different Ga deposition amount were prepared by Ga liquid deposition method. The XRD, N2 physical adsorption, SEM, TEM, XPS, H2-TPR and Py-IR measurements were used to characterize the morphology, textural properties and acidity of the modified ZSM-5 zeolites. The catalytic performance of the Hexene-1 aromatization was evaluated on a fixed-bed microreactor. The effects of Ga modification on the physicochemical and catalytic performance of nano-ZSM-5 zeolites were investigated. The Ga species in the modified nano-ZSM-5 zeolites mainly exist as the form of Ga2O3 and GaO+, which provide strong Lewis acid sites. The aromatics selectivity over Ga modified nano-ZSM-5 zeolite in the Hexene-1 aromatization was significantly increased, which could be attributed to the improvement of the dehydrogenation activity. The selectivity for aromatics over the Ga4.2/NZ5 catalyst with suitable Ga deposition amount reached 55.4%.