Xinyue Wang, Z. Zeng, Jing Zhang, Guoqi Zhang, Pan Liu
{"title":"模拟与验证Cu@Ag用于功率半导体贴片的核壳烧结浆料","authors":"Xinyue Wang, Z. Zeng, Jing Zhang, Guoqi Zhang, Pan Liu","doi":"10.1109/ectc51906.2022.00086","DOIUrl":null,"url":null,"abstract":"With the increasing application of wide bandgap materials such as silicon carbide and gallium nitride in power devices, the working temperature of power devices has been pushed further. Therefore, it brings higher requirements for packaging materials. Sintered silver is a widely accepted chip connection material. However, silver suffers from high prices and electromigration. Therefore, a novel sintered material based on silver-copper core-shell structured particles raises the attention of researchers to solve this deficiency. To accelerate the development of new materials and their related processes, a four-sphere model of the silver-coated copper structure is established in this paper. The mathematical relationship between the porosity and thermal conductivity of sintered body and the actual sintering process was preliminarily established through the calculation based on a series of FEM simulations. The model was further validated through experiments. The modeling method and conclusion are utilized for future process adjustment, which is of great significance to accelerate the development, application, and reliability of new packaging materials.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and Verification or Cu@Ag Core-shell Sintered Paste for Power Semiconductor Die-attach Applications\",\"authors\":\"Xinyue Wang, Z. Zeng, Jing Zhang, Guoqi Zhang, Pan Liu\",\"doi\":\"10.1109/ectc51906.2022.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing application of wide bandgap materials such as silicon carbide and gallium nitride in power devices, the working temperature of power devices has been pushed further. Therefore, it brings higher requirements for packaging materials. Sintered silver is a widely accepted chip connection material. However, silver suffers from high prices and electromigration. Therefore, a novel sintered material based on silver-copper core-shell structured particles raises the attention of researchers to solve this deficiency. To accelerate the development of new materials and their related processes, a four-sphere model of the silver-coated copper structure is established in this paper. The mathematical relationship between the porosity and thermal conductivity of sintered body and the actual sintering process was preliminarily established through the calculation based on a series of FEM simulations. The model was further validated through experiments. The modeling method and conclusion are utilized for future process adjustment, which is of great significance to accelerate the development, application, and reliability of new packaging materials.\",\"PeriodicalId\":139520,\"journal\":{\"name\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc51906.2022.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation and Verification or Cu@Ag Core-shell Sintered Paste for Power Semiconductor Die-attach Applications
With the increasing application of wide bandgap materials such as silicon carbide and gallium nitride in power devices, the working temperature of power devices has been pushed further. Therefore, it brings higher requirements for packaging materials. Sintered silver is a widely accepted chip connection material. However, silver suffers from high prices and electromigration. Therefore, a novel sintered material based on silver-copper core-shell structured particles raises the attention of researchers to solve this deficiency. To accelerate the development of new materials and their related processes, a four-sphere model of the silver-coated copper structure is established in this paper. The mathematical relationship between the porosity and thermal conductivity of sintered body and the actual sintering process was preliminarily established through the calculation based on a series of FEM simulations. The model was further validated through experiments. The modeling method and conclusion are utilized for future process adjustment, which is of great significance to accelerate the development, application, and reliability of new packaging materials.