{"title":"一些超分布空间的微局部分析","authors":"K. Johansson, S. Pilipovic, N. Teofanov, J. Toft","doi":"10.2298/PIM1206001J","DOIUrl":null,"url":null,"abstract":"We extend some results from [14] and [19], concerning wave-front sets of Fourier–Lebesgue and modulation space types, to a broader class of spaces of ultradistributions. We relate these wave-front sets one to another and to the usual wave-front sets of ultradistributions.Furthermore, we give a description of discrete wave-front sets by intro- ducing the notion of discretely regular points, and prove that these wave-front sets coincide with corresponding wave-front sets in [19]. Some of these inves- tigations are based on the properties of the Gabor frames.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"MICRO-LOCAL ANALYSIS IN SOME SPACES OF ULTRADISTRIBUTIONS\",\"authors\":\"K. Johansson, S. Pilipovic, N. Teofanov, J. Toft\",\"doi\":\"10.2298/PIM1206001J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend some results from [14] and [19], concerning wave-front sets of Fourier–Lebesgue and modulation space types, to a broader class of spaces of ultradistributions. We relate these wave-front sets one to another and to the usual wave-front sets of ultradistributions.Furthermore, we give a description of discrete wave-front sets by intro- ducing the notion of discretely regular points, and prove that these wave-front sets coincide with corresponding wave-front sets in [19]. Some of these inves- tigations are based on the properties of the Gabor frames.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1206001J\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1206001J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MICRO-LOCAL ANALYSIS IN SOME SPACES OF ULTRADISTRIBUTIONS
We extend some results from [14] and [19], concerning wave-front sets of Fourier–Lebesgue and modulation space types, to a broader class of spaces of ultradistributions. We relate these wave-front sets one to another and to the usual wave-front sets of ultradistributions.Furthermore, we give a description of discrete wave-front sets by intro- ducing the notion of discretely regular points, and prove that these wave-front sets coincide with corresponding wave-front sets in [19]. Some of these inves- tigations are based on the properties of the Gabor frames.