Ruixin Tao, Jianwei Liu, H. Su, Yang Sun, Xiao Liu
{"title":"椭圆曲线上的提前批多指数组合","authors":"Ruixin Tao, Jianwei Liu, H. Su, Yang Sun, Xiao Liu","doi":"10.1109/CSCloud.2015.88","DOIUrl":null,"url":null,"abstract":"Multi-exponentiation is very important in varies cryptographic and digital signatures. In the situation like electronic cash and SNS websites, the server need to answer a mass of requests in a short time. With every request, there are always processes of encryption, decryption, signature and verification. In these processes, there are large amount of computations of multi-exponentiation, which shows the demand of the acceleration of multi-exponentiation. Handling many multi-exponentiation simultaneously is called batch multi-exponentiation. Yang Sun first came up with a algorithm (BME) deal with this problem. We propose a new batch multi-exponentiation method to accelerate BME in this paper and also extend it to the elliptic curve setting by specifying an optimal left-to-right Binary signed-digit recoding. It is named Combination in Advance Batch Multiexponentiation on Elliptic Curve (CABME)algorithm. We focus on the form which is multi-exponentiation with two bases in a group since it is commonly used. Our CABME algorithm is about 16:7% more effective than BME under the same situation.","PeriodicalId":278090,"journal":{"name":"2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combination in Advance Batch Multi-exponentiation on Elliptic Curve\",\"authors\":\"Ruixin Tao, Jianwei Liu, H. Su, Yang Sun, Xiao Liu\",\"doi\":\"10.1109/CSCloud.2015.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-exponentiation is very important in varies cryptographic and digital signatures. In the situation like electronic cash and SNS websites, the server need to answer a mass of requests in a short time. With every request, there are always processes of encryption, decryption, signature and verification. In these processes, there are large amount of computations of multi-exponentiation, which shows the demand of the acceleration of multi-exponentiation. Handling many multi-exponentiation simultaneously is called batch multi-exponentiation. Yang Sun first came up with a algorithm (BME) deal with this problem. We propose a new batch multi-exponentiation method to accelerate BME in this paper and also extend it to the elliptic curve setting by specifying an optimal left-to-right Binary signed-digit recoding. It is named Combination in Advance Batch Multiexponentiation on Elliptic Curve (CABME)algorithm. We focus on the form which is multi-exponentiation with two bases in a group since it is commonly used. Our CABME algorithm is about 16:7% more effective than BME under the same situation.\",\"PeriodicalId\":278090,\"journal\":{\"name\":\"2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCloud.2015.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2015.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combination in Advance Batch Multi-exponentiation on Elliptic Curve
Multi-exponentiation is very important in varies cryptographic and digital signatures. In the situation like electronic cash and SNS websites, the server need to answer a mass of requests in a short time. With every request, there are always processes of encryption, decryption, signature and verification. In these processes, there are large amount of computations of multi-exponentiation, which shows the demand of the acceleration of multi-exponentiation. Handling many multi-exponentiation simultaneously is called batch multi-exponentiation. Yang Sun first came up with a algorithm (BME) deal with this problem. We propose a new batch multi-exponentiation method to accelerate BME in this paper and also extend it to the elliptic curve setting by specifying an optimal left-to-right Binary signed-digit recoding. It is named Combination in Advance Batch Multiexponentiation on Elliptic Curve (CABME)algorithm. We focus on the form which is multi-exponentiation with two bases in a group since it is commonly used. Our CABME algorithm is about 16:7% more effective than BME under the same situation.