基于聚类数据挖掘的空间数据库离群点检测

Amitava Karmaker, Syed M. Rahman
{"title":"基于聚类数据挖掘的空间数据库离群点检测","authors":"Amitava Karmaker, Syed M. Rahman","doi":"10.1109/ITNG.2009.198","DOIUrl":null,"url":null,"abstract":"Data mining refers to extracting or “mining” knowledge from large amounts of data. Thus, it plays an important role in extracting spatial patterns and features. It is an essential process where intelligent methods are applied in order to extract data patterns. In this paper, we have proposed a technique with which it is possible to detect whether a given data set is erroneous. Furthermore, our technique locates the possible errors and comprehends the pattern of errors to minimize outliers. Finally, it ensures the integrity and correctness of large databases. We have made use of some of the existing clustering algorithms (like PAM, CLARA, CLARANS) to formulate our proposed technique. The proposed outlier detection and minimization method is simpler to implement, efficient comparing with respect to both time and memory complexity than other existing methods.","PeriodicalId":347761,"journal":{"name":"2009 Sixth International Conference on Information Technology: New Generations","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Outlier Detection in Spatial Databases Using Clustering Data Mining\",\"authors\":\"Amitava Karmaker, Syed M. Rahman\",\"doi\":\"10.1109/ITNG.2009.198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining refers to extracting or “mining” knowledge from large amounts of data. Thus, it plays an important role in extracting spatial patterns and features. It is an essential process where intelligent methods are applied in order to extract data patterns. In this paper, we have proposed a technique with which it is possible to detect whether a given data set is erroneous. Furthermore, our technique locates the possible errors and comprehends the pattern of errors to minimize outliers. Finally, it ensures the integrity and correctness of large databases. We have made use of some of the existing clustering algorithms (like PAM, CLARA, CLARANS) to formulate our proposed technique. The proposed outlier detection and minimization method is simpler to implement, efficient comparing with respect to both time and memory complexity than other existing methods.\",\"PeriodicalId\":347761,\"journal\":{\"name\":\"2009 Sixth International Conference on Information Technology: New Generations\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Sixth International Conference on Information Technology: New Generations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNG.2009.198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Conference on Information Technology: New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2009.198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

数据挖掘是指从大量数据中提取或“挖掘”知识。因此,它在提取空间模式和特征方面起着重要的作用。它是应用智能方法提取数据模式的基本过程。在本文中,我们提出了一种可以检测给定数据集是否错误的技术。此外,我们的技术定位可能的错误,并理解错误的模式,以最小化异常值。最后,保证了大型数据库的完整性和正确性。我们使用了一些现有的聚类算法(如PAM、CLARA、CLARANS)来制定我们提出的技术。本文提出的异常点检测和最小化方法实现简单,在时间和内存复杂度方面都比其他现有方法高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outlier Detection in Spatial Databases Using Clustering Data Mining
Data mining refers to extracting or “mining” knowledge from large amounts of data. Thus, it plays an important role in extracting spatial patterns and features. It is an essential process where intelligent methods are applied in order to extract data patterns. In this paper, we have proposed a technique with which it is possible to detect whether a given data set is erroneous. Furthermore, our technique locates the possible errors and comprehends the pattern of errors to minimize outliers. Finally, it ensures the integrity and correctness of large databases. We have made use of some of the existing clustering algorithms (like PAM, CLARA, CLARANS) to formulate our proposed technique. The proposed outlier detection and minimization method is simpler to implement, efficient comparing with respect to both time and memory complexity than other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信