基于svm的Android应用恶意软件检测

Guqian Dai, Jigang Ge, Minghang Cai, Daoqian Xu, Wenjia Li
{"title":"基于svm的Android应用恶意软件检测","authors":"Guqian Dai, Jigang Ge, Minghang Cai, Daoqian Xu, Wenjia Li","doi":"10.1145/2766498.2774991","DOIUrl":null,"url":null,"abstract":"In this paper, we study a SVM-based malware detection scheme for Android application, which integrates both risky permission combinations and vulnerable API calls and use them as features in the SVM algorithm. Preliminary experiments have validated the proposed malware detection scheme.","PeriodicalId":261845,"journal":{"name":"Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"SVM-based malware detection for Android applications\",\"authors\":\"Guqian Dai, Jigang Ge, Minghang Cai, Daoqian Xu, Wenjia Li\",\"doi\":\"10.1145/2766498.2774991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a SVM-based malware detection scheme for Android application, which integrates both risky permission combinations and vulnerable API calls and use them as features in the SVM algorithm. Preliminary experiments have validated the proposed malware detection scheme.\",\"PeriodicalId\":261845,\"journal\":{\"name\":\"Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766498.2774991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766498.2774991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文研究了一种基于SVM的Android应用恶意软件检测方案,该方案将风险权限组合和易受攻击的API调用结合起来,并将其作为SVM算法的特征。初步实验验证了所提出的恶意软件检测方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SVM-based malware detection for Android applications
In this paper, we study a SVM-based malware detection scheme for Android application, which integrates both risky permission combinations and vulnerable API calls and use them as features in the SVM algorithm. Preliminary experiments have validated the proposed malware detection scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信