用FO建模机器学习和数据挖掘问题(·)

H. Blockeel, B. Bogaerts, M. Bruynooghe, B. D. Cat, Stef De Pooter, M. Denecker, A. Labarre, J. Ramon, S. Verwer
{"title":"用FO建模机器学习和数据挖掘问题(·)","authors":"H. Blockeel, B. Bogaerts, M. Bruynooghe, B. D. Cat, Stef De Pooter, M. Denecker, A. Labarre, J. Ramon, S. Verwer","doi":"10.4230/LIPIcs.ICLP.2012.14","DOIUrl":null,"url":null,"abstract":"This paper reports on the use of the FO(·) language and the IDP framework for modeling and solving some machine learning and data mining tasks. The core component of a model in the IDP framework is an FO(·) theory consisting of formulas in first order logic and definitions; the latter are basically logic programs where clause bodies can have arbitrary first order formulas. Hence, it is a small step for a well-versed computer scientist to start modeling. We describe some models resulting from the collaboration between IDP experts and domain experts solving machine learning and data mining tasks. A first task is in the domain of stemmatology, a domain of philology concerned with the relationship between surviving variant versions of text. A second task is about a somewhat similar problem within biology where phylogenetic trees are used to represent the evolution of species. A third and final task is about learning a minimal automaton consistent with a given set of strings. For each task, we introduce the problem, present the IDP code and report on some experiments.","PeriodicalId":271041,"journal":{"name":"International Conference on Logic Programming","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modeling Machine Learning and Data Mining Problems with FO(·)\",\"authors\":\"H. Blockeel, B. Bogaerts, M. Bruynooghe, B. D. Cat, Stef De Pooter, M. Denecker, A. Labarre, J. Ramon, S. Verwer\",\"doi\":\"10.4230/LIPIcs.ICLP.2012.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the use of the FO(·) language and the IDP framework for modeling and solving some machine learning and data mining tasks. The core component of a model in the IDP framework is an FO(·) theory consisting of formulas in first order logic and definitions; the latter are basically logic programs where clause bodies can have arbitrary first order formulas. Hence, it is a small step for a well-versed computer scientist to start modeling. We describe some models resulting from the collaboration between IDP experts and domain experts solving machine learning and data mining tasks. A first task is in the domain of stemmatology, a domain of philology concerned with the relationship between surviving variant versions of text. A second task is about a somewhat similar problem within biology where phylogenetic trees are used to represent the evolution of species. A third and final task is about learning a minimal automaton consistent with a given set of strings. For each task, we introduce the problem, present the IDP code and report on some experiments.\",\"PeriodicalId\":271041,\"journal\":{\"name\":\"International Conference on Logic Programming\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Logic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ICLP.2012.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Logic Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ICLP.2012.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文报道了使用FO(·)语言和IDP框架来建模和解决一些机器学习和数据挖掘任务。IDP框架中模型的核心组成部分是由一阶逻辑公式和定义组成的FO(·)理论;后者基本上是逻辑程序,其中子句主体可以具有任意一阶公式。因此,对于精通计算机的科学家来说,开始建模是一小步。我们描述了一些由IDP专家和领域专家解决机器学习和数据挖掘任务的合作产生的模型。第一个任务是在系统学领域,这是一个关注现存文本变体版本之间关系的语言学领域。第二个任务是关于生物学中的一个有点类似的问题,系统发育树被用来表示物种的进化。第三个也是最后一个任务是学习与给定字符串集一致的最小自动机。对于每个任务,我们都介绍了问题,给出了IDP代码并报告了一些实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Machine Learning and Data Mining Problems with FO(·)
This paper reports on the use of the FO(·) language and the IDP framework for modeling and solving some machine learning and data mining tasks. The core component of a model in the IDP framework is an FO(·) theory consisting of formulas in first order logic and definitions; the latter are basically logic programs where clause bodies can have arbitrary first order formulas. Hence, it is a small step for a well-versed computer scientist to start modeling. We describe some models resulting from the collaboration between IDP experts and domain experts solving machine learning and data mining tasks. A first task is in the domain of stemmatology, a domain of philology concerned with the relationship between surviving variant versions of text. A second task is about a somewhat similar problem within biology where phylogenetic trees are used to represent the evolution of species. A third and final task is about learning a minimal automaton consistent with a given set of strings. For each task, we introduce the problem, present the IDP code and report on some experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信