S. Vukmirovic, A. Erdeljan, Lendak Imre, D. Capko, Nemanja Nedic
{"title":"公用事业管理系统的自适应神经网络工作流管理","authors":"S. Vukmirovic, A. Erdeljan, Lendak Imre, D. Capko, Nemanja Nedic","doi":"10.1109/NEUREL.2010.5644102","DOIUrl":null,"url":null,"abstract":"This paper focuses on grid performance optimization in large scale workflow applications with an intelligent workflow scheduling mechanism. Utility Management Systems (UMS) are managing very large numbers of workflows with very high resource requirements. This paper proposes a UMS scheduling architecture which dynamically executes a scheduling algorithm using near real-time feedback about the current status of grid nodes. Workflow scheduling was performed with an artificial neural network (ANN). The network was trained in a system with three workflows. The case study presented in this paper shows results achieved in a three workflow system, as well as results achieved in a five workflow system where an adaptive ANN was used. The results testify that significant improvement of overall execution time can be achieved by adapting weights in the neural network.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive neural network workflow management for Utility Management Systems\",\"authors\":\"S. Vukmirovic, A. Erdeljan, Lendak Imre, D. Capko, Nemanja Nedic\",\"doi\":\"10.1109/NEUREL.2010.5644102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on grid performance optimization in large scale workflow applications with an intelligent workflow scheduling mechanism. Utility Management Systems (UMS) are managing very large numbers of workflows with very high resource requirements. This paper proposes a UMS scheduling architecture which dynamically executes a scheduling algorithm using near real-time feedback about the current status of grid nodes. Workflow scheduling was performed with an artificial neural network (ANN). The network was trained in a system with three workflows. The case study presented in this paper shows results achieved in a three workflow system, as well as results achieved in a five workflow system where an adaptive ANN was used. The results testify that significant improvement of overall execution time can be achieved by adapting weights in the neural network.\",\"PeriodicalId\":227890,\"journal\":{\"name\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2010.5644102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive neural network workflow management for Utility Management Systems
This paper focuses on grid performance optimization in large scale workflow applications with an intelligent workflow scheduling mechanism. Utility Management Systems (UMS) are managing very large numbers of workflows with very high resource requirements. This paper proposes a UMS scheduling architecture which dynamically executes a scheduling algorithm using near real-time feedback about the current status of grid nodes. Workflow scheduling was performed with an artificial neural network (ANN). The network was trained in a system with three workflows. The case study presented in this paper shows results achieved in a three workflow system, as well as results achieved in a five workflow system where an adaptive ANN was used. The results testify that significant improvement of overall execution time can be achieved by adapting weights in the neural network.