自动化的、可跟踪的和交互式的领域建模

Rijul Saini
{"title":"自动化的、可跟踪的和交互式的领域建模","authors":"Rijul Saini","doi":"10.1145/3550356.3552372","DOIUrl":null,"url":null,"abstract":"In domain modelling, practitioners manually extract analyzable and more concise domain models from problem descriptions which express requirements in natural language. With automated domain modelling support using existing approaches, some challenges remain unaddressed - inadequate accuracy of extracted models, no support for traceability of modelling decisions, and no facility for system-modeller interactions. To address these challenges and better support practitioners, we present our bot-assisted solution. Furthermore, we evaluate the effectiveness of our solution and find promising results which warrant further research in this direction.","PeriodicalId":182662,"journal":{"name":"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated, traceable, and interactive domain modelling\",\"authors\":\"Rijul Saini\",\"doi\":\"10.1145/3550356.3552372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In domain modelling, practitioners manually extract analyzable and more concise domain models from problem descriptions which express requirements in natural language. With automated domain modelling support using existing approaches, some challenges remain unaddressed - inadequate accuracy of extracted models, no support for traceability of modelling decisions, and no facility for system-modeller interactions. To address these challenges and better support practitioners, we present our bot-assisted solution. Furthermore, we evaluate the effectiveness of our solution and find promising results which warrant further research in this direction.\",\"PeriodicalId\":182662,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3550356.3552372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550356.3552372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在领域建模中,从业者从用自然语言表达需求的问题描述中手动提取可分析的和更简洁的领域模型。使用现有方法的自动化领域建模支持,一些挑战仍然没有解决——提取模型的准确性不足,不支持建模决策的可追溯性,以及不支持系统建模者的交互。为了应对这些挑战并更好地支持从业者,我们提出了我们的机器人辅助解决方案。此外,我们评估了我们的解决方案的有效性,并发现了有希望的结果,值得在这个方向上进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated, traceable, and interactive domain modelling
In domain modelling, practitioners manually extract analyzable and more concise domain models from problem descriptions which express requirements in natural language. With automated domain modelling support using existing approaches, some challenges remain unaddressed - inadequate accuracy of extracted models, no support for traceability of modelling decisions, and no facility for system-modeller interactions. To address these challenges and better support practitioners, we present our bot-assisted solution. Furthermore, we evaluate the effectiveness of our solution and find promising results which warrant further research in this direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信