基于混合语言的非结构化文本主题检测

Suraj Sharma, Sabitra Sankalp Panigrahi, Biswajit Paul, N. Panigrahi
{"title":"基于混合语言的非结构化文本主题检测","authors":"Suraj Sharma, Sabitra Sankalp Panigrahi, Biswajit Paul, N. Panigrahi","doi":"10.1109/ICIT.2018.00040","DOIUrl":null,"url":null,"abstract":"This paper proposes a design of a Topic Detector machine which combines the power of LDA and Word2Vec to detect topic from mixed text. The experiment is carried on a mixed text of English and Hindi to detect topics. The technique tokenizes the mixed text of Hindi and English and models them into feature vector trough a process of Word2Vec. These vectors are clustered and the cluster centers are identified as the topic of the cluster of tokens","PeriodicalId":221269,"journal":{"name":"2018 International Conference on Information Technology (ICIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Topic from Unstructured Text With Mixed Languages\",\"authors\":\"Suraj Sharma, Sabitra Sankalp Panigrahi, Biswajit Paul, N. Panigrahi\",\"doi\":\"10.1109/ICIT.2018.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a design of a Topic Detector machine which combines the power of LDA and Word2Vec to detect topic from mixed text. The experiment is carried on a mixed text of English and Hindi to detect topics. The technique tokenizes the mixed text of Hindi and English and models them into feature vector trough a process of Word2Vec. These vectors are clustered and the cluster centers are identified as the topic of the cluster of tokens\",\"PeriodicalId\":221269,\"journal\":{\"name\":\"2018 International Conference on Information Technology (ICIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2018.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种结合LDA和Word2Vec的能力从混合文本中检测主题的主题检测器的设计。实验在英语和印地语混合文本中进行主题检测。该技术对印地语和英语混合文本进行标记,并通过Word2Vec过程将其建模为特征向量。将这些向量聚类,并将聚类中心确定为令牌聚类的主题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Topic from Unstructured Text With Mixed Languages
This paper proposes a design of a Topic Detector machine which combines the power of LDA and Word2Vec to detect topic from mixed text. The experiment is carried on a mixed text of English and Hindi to detect topics. The technique tokenizes the mixed text of Hindi and English and models them into feature vector trough a process of Word2Vec. These vectors are clustered and the cluster centers are identified as the topic of the cluster of tokens
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信