基于多目标进化算法的知识分类规则构建

A. Pila, Rafael Giusti, R. Prati, M. C. Monard
{"title":"基于多目标进化算法的知识分类规则构建","authors":"A. Pila, Rafael Giusti, R. Prati, M. C. Monard","doi":"10.1109/HIS.2006.6","DOIUrl":null,"url":null,"abstract":"This work proposes the use of evolutionary algorithms to build individual knowledge rules with specific properties that are usually neglected when conducted by traditional supervised learning methods. The proposed evolutionary algorithm uses a rank-based, multi-objective fitness function that enables the arrangement of any set of measures. Experimental results that show the suitability of our proposal are also presented.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"77 4 Pt 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Multi-Objective Evolutionary Algorithm to Build Knowledge Classification Rules with Specific Properties\",\"authors\":\"A. Pila, Rafael Giusti, R. Prati, M. C. Monard\",\"doi\":\"10.1109/HIS.2006.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes the use of evolutionary algorithms to build individual knowledge rules with specific properties that are usually neglected when conducted by traditional supervised learning methods. The proposed evolutionary algorithm uses a rank-based, multi-objective fitness function that enables the arrangement of any set of measures. Experimental results that show the suitability of our proposal are also presented.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"77 4 Pt 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

这项工作提出了使用进化算法来构建具有特定属性的个体知识规则,这些属性通常在传统的监督学习方法中被忽略。提出的进化算法使用基于秩的多目标适应度函数,可以安排任何一组度量。实验结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Objective Evolutionary Algorithm to Build Knowledge Classification Rules with Specific Properties
This work proposes the use of evolutionary algorithms to build individual knowledge rules with specific properties that are usually neglected when conducted by traditional supervised learning methods. The proposed evolutionary algorithm uses a rank-based, multi-objective fitness function that enables the arrangement of any set of measures. Experimental results that show the suitability of our proposal are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信