自主轮式机器人路径规划的群体智能

A. Anguelov, R. Trifonov, Ognian Nakov
{"title":"自主轮式机器人路径规划的群体智能","authors":"A. Anguelov, R. Trifonov, Ognian Nakov","doi":"10.1109/TELECOM50385.2020.9299536","DOIUrl":null,"url":null,"abstract":"Mobile robot path planning in dynamic environments answers the question of how to find the shortest path from the initial position to its final destination by avoiding any obstacle. This paper is trying to improve known probabilistic sampling-based algorithms for the road map robot planning introducing a hybrid between wave-front planner cell technique, tangent bug algorithm, and ant colony intelligence strategies, thus minimize the heuristic logic dropping ineffective paths to the target. The proposed colony intelligence tangent bug algorithm (CITBA) determines the shortest path taking into account available historical sensor data for the dynamic surroundings inside the landscape and collected from all autonomous robots while travailing.","PeriodicalId":300010,"journal":{"name":"2020 28th National Conference with International Participation (TELECOM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Colony Intelligence for Autonomous Wheeled Robot Path Planning\",\"authors\":\"A. Anguelov, R. Trifonov, Ognian Nakov\",\"doi\":\"10.1109/TELECOM50385.2020.9299536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile robot path planning in dynamic environments answers the question of how to find the shortest path from the initial position to its final destination by avoiding any obstacle. This paper is trying to improve known probabilistic sampling-based algorithms for the road map robot planning introducing a hybrid between wave-front planner cell technique, tangent bug algorithm, and ant colony intelligence strategies, thus minimize the heuristic logic dropping ineffective paths to the target. The proposed colony intelligence tangent bug algorithm (CITBA) determines the shortest path taking into account available historical sensor data for the dynamic surroundings inside the landscape and collected from all autonomous robots while travailing.\",\"PeriodicalId\":300010,\"journal\":{\"name\":\"2020 28th National Conference with International Participation (TELECOM)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th National Conference with International Participation (TELECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELECOM50385.2020.9299536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th National Conference with International Participation (TELECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELECOM50385.2020.9299536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

动态环境下的移动机器人路径规划问题是如何在避开障碍物的情况下找到从初始位置到最终目的地的最短路径。本文试图改进已知的基于概率抽样的路线图机器人规划算法,引入波前规划单元技术、切线错误算法和蚁群智能策略的混合,从而最大限度地减少启发式逻辑导致的无效路径到目标。提出的蚁群智能切线bug算法(CITBA)考虑到景观内动态环境的可用历史传感器数据以及从所有自主机器人在行走时收集的数据,确定了最短路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Colony Intelligence for Autonomous Wheeled Robot Path Planning
Mobile robot path planning in dynamic environments answers the question of how to find the shortest path from the initial position to its final destination by avoiding any obstacle. This paper is trying to improve known probabilistic sampling-based algorithms for the road map robot planning introducing a hybrid between wave-front planner cell technique, tangent bug algorithm, and ant colony intelligence strategies, thus minimize the heuristic logic dropping ineffective paths to the target. The proposed colony intelligence tangent bug algorithm (CITBA) determines the shortest path taking into account available historical sensor data for the dynamic surroundings inside the landscape and collected from all autonomous robots while travailing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信