{"title":"人脸识别的多项式相关滤波器","authors":"Mohamed I. Alkanhal, Muhammad Ghulam","doi":"10.1109/ICMLA.2012.120","DOIUrl":null,"url":null,"abstract":"This paper describes a nonlinear face recognition method based on polynomial spatial frequency image processing. This nonlinear method is known as the polynomial distance classifier correlation filter (PDCCF). PDCCF is a member of a well-known family of filters called correlation filters. Correlation filters are attractive because of their shift invariance and potential for distortion tolerant pattern recognition. PDCCF addresses more than one filter in the system, each one with a different form of non-linearity. Our experimental results on the Olivetti Research Laboratory (ORL) and Extended Yale B (EYB) face datasets show that PDCCF outperforms the principal component analysis (PCA), and the local binary pattern (LBP).","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polynomial Correlation Filters for Human Face Recognition\",\"authors\":\"Mohamed I. Alkanhal, Muhammad Ghulam\",\"doi\":\"10.1109/ICMLA.2012.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a nonlinear face recognition method based on polynomial spatial frequency image processing. This nonlinear method is known as the polynomial distance classifier correlation filter (PDCCF). PDCCF is a member of a well-known family of filters called correlation filters. Correlation filters are attractive because of their shift invariance and potential for distortion tolerant pattern recognition. PDCCF addresses more than one filter in the system, each one with a different form of non-linearity. Our experimental results on the Olivetti Research Laboratory (ORL) and Extended Yale B (EYB) face datasets show that PDCCF outperforms the principal component analysis (PCA), and the local binary pattern (LBP).\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
提出了一种基于多项式空间频率图像处理的非线性人脸识别方法。这种非线性方法被称为多项式距离分类器相关滤波器(PDCCF)。PDCCF是众所周知的相关滤波器家族中的一员。相关滤波器因其移位不变性和抗畸变模式识别的潜力而备受关注。PDCCF处理系统中的多个滤波器,每个滤波器都具有不同形式的非线性。我们在Olivetti Research Laboratory (ORL)和Extended Yale B (EYB)人脸数据集上的实验结果表明,PDCCF优于主成分分析(PCA)和局部二值模式(LBP)。
Polynomial Correlation Filters for Human Face Recognition
This paper describes a nonlinear face recognition method based on polynomial spatial frequency image processing. This nonlinear method is known as the polynomial distance classifier correlation filter (PDCCF). PDCCF is a member of a well-known family of filters called correlation filters. Correlation filters are attractive because of their shift invariance and potential for distortion tolerant pattern recognition. PDCCF addresses more than one filter in the system, each one with a different form of non-linearity. Our experimental results on the Olivetti Research Laboratory (ORL) and Extended Yale B (EYB) face datasets show that PDCCF outperforms the principal component analysis (PCA), and the local binary pattern (LBP).