一种具有层次先验的鲁棒测向估计方法

Q. Wu, D. Fuhrmann
{"title":"一种具有层次先验的鲁棒测向估计方法","authors":"Q. Wu, D. Fuhrmann","doi":"10.1109/MDSP.1989.97078","DOIUrl":null,"url":null,"abstract":"Summary form only given. An estimator that can maintain acceptable performance for the hard conditions on which the maximum-likelihood estimator fails, i.e. when the signal-to-noise ratio falls below a certain threshold, is derived by introducing the prior information into the estimation. The prior information may be the approximate signal powers and the noise power. Because the available prior information is always vague, a robust way to incorporate it is developed. Simulation results showing the significant performance improvement are given.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust estimator for direction finding with hierarchical prior\",\"authors\":\"Q. Wu, D. Fuhrmann\",\"doi\":\"10.1109/MDSP.1989.97078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. An estimator that can maintain acceptable performance for the hard conditions on which the maximum-likelihood estimator fails, i.e. when the signal-to-noise ratio falls below a certain threshold, is derived by introducing the prior information into the estimation. The prior information may be the approximate signal powers and the noise power. Because the available prior information is always vague, a robust way to incorporate it is developed. Simulation results showing the significant performance improvement are given.<<ETX>>\",\"PeriodicalId\":340681,\"journal\":{\"name\":\"Sixth Multidimensional Signal Processing Workshop,\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth Multidimensional Signal Processing Workshop,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDSP.1989.97078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。在最大似然估计器失效的困难条件下,即当信噪比低于某一阈值时,通过将先验信息引入估计中,可以得到一个能够保持可接受性能的估计器。先验信息可以是近似的信号功率和噪声功率。由于可用的先验信息总是模糊的,因此开发了一种整合先验信息的稳健方法。仿真结果显示了显著的性能改进
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust estimator for direction finding with hierarchical prior
Summary form only given. An estimator that can maintain acceptable performance for the hard conditions on which the maximum-likelihood estimator fails, i.e. when the signal-to-noise ratio falls below a certain threshold, is derived by introducing the prior information into the estimation. The prior information may be the approximate signal powers and the noise power. Because the available prior information is always vague, a robust way to incorporate it is developed. Simulation results showing the significant performance improvement are given.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信