基于One-Hot编码和改进的ResNet18的DDoS攻击检测方法

Hanlin Lu, Beining Ying, Xujun Che, Zhaoning Jin, Mingxuan Wang, Shuhui Wu
{"title":"基于One-Hot编码和改进的ResNet18的DDoS攻击检测方法","authors":"Hanlin Lu, Beining Ying, Xujun Che, Zhaoning Jin, Mingxuan Wang, Shuhui Wu","doi":"10.1109/AINIT59027.2023.10210725","DOIUrl":null,"url":null,"abstract":"DDoS attack is easy to implement, concealed, and destructive. It has been a serious threat to network security. This paper chooses CIC-DDoS2019 as the dataset, removes the invalid redundant features and abnormal data from the dataset through data preprocessing, reconstructs the preprocessed network traffic data using One-Hot encoding, and finally selects the improved ResNet18 as the classifier to detect DDoS attacks. The experimental results show that the method can convert the network traffic data into binary images efficiently and improve the detection accuracy of ResNet18 to 98%.","PeriodicalId":276778,"journal":{"name":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDoS attack detection method based on One-Hot coding and improved ResNet18\",\"authors\":\"Hanlin Lu, Beining Ying, Xujun Che, Zhaoning Jin, Mingxuan Wang, Shuhui Wu\",\"doi\":\"10.1109/AINIT59027.2023.10210725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DDoS attack is easy to implement, concealed, and destructive. It has been a serious threat to network security. This paper chooses CIC-DDoS2019 as the dataset, removes the invalid redundant features and abnormal data from the dataset through data preprocessing, reconstructs the preprocessed network traffic data using One-Hot encoding, and finally selects the improved ResNet18 as the classifier to detect DDoS attacks. The experimental results show that the method can convert the network traffic data into binary images efficiently and improve the detection accuracy of ResNet18 to 98%.\",\"PeriodicalId\":276778,\"journal\":{\"name\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINIT59027.2023.10210725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINIT59027.2023.10210725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DDoS攻击具有易实现、隐蔽性强、破坏性强等特点。它已经严重威胁到网络安全。本文选择CIC-DDoS2019作为数据集,通过数据预处理去除数据集中无效的冗余特征和异常数据,利用One-Hot编码重构预处理后的网络流量数据,最后选择改进的ResNet18作为分类器检测DDoS攻击。实验结果表明,该方法可以有效地将网络流量数据转换为二值图像,将ResNet18的检测准确率提高到98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DDoS attack detection method based on One-Hot coding and improved ResNet18
DDoS attack is easy to implement, concealed, and destructive. It has been a serious threat to network security. This paper chooses CIC-DDoS2019 as the dataset, removes the invalid redundant features and abnormal data from the dataset through data preprocessing, reconstructs the preprocessed network traffic data using One-Hot encoding, and finally selects the improved ResNet18 as the classifier to detect DDoS attacks. The experimental results show that the method can convert the network traffic data into binary images efficiently and improve the detection accuracy of ResNet18 to 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信