R. Nandwana, Saurabh Saxena, Ahmed Elkholy, Mrunmay Talegaonkar, Junheng Zhu, Woo-Seok Choi, A. Elmallah, P. Hanumolu
{"title":"29.6 3- 10gb /s 5.75pJ/b收发器,采用65nm CMOS灵活时钟","authors":"R. Nandwana, Saurabh Saxena, Ahmed Elkholy, Mrunmay Talegaonkar, Junheng Zhu, Woo-Seok Choi, A. Elmallah, P. Hanumolu","doi":"10.1109/ISSCC.2017.7870476","DOIUrl":null,"url":null,"abstract":"Serial link transceivers that can operate across a wide range of data rates offer flexibility and rapid realization of single-chip multi-standard solutions. The ability to independently control the data rate of each lane in a multi-lane transceiver with fine granularity is also valuable [1,2]. The implementation of such transceivers would require analog front-ends and clocking circuits that can operate over a wide range of frequencies. As a result, compared to transceivers that are optimized to operate at one single data rate, flexible-rate transceivers are power and area hungry [1]. Because a single PLL cannot generate clocks across the entire interface operating range, [1,2] use multiple LC tanks, carefully optimized waveform shaping circuits, power hungry clock distribution, and complex frequency planning methods.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"29.6 A 3-to-10Gb/s 5.75pJ/b transceiver with flexible clocking in 65nm CMOS\",\"authors\":\"R. Nandwana, Saurabh Saxena, Ahmed Elkholy, Mrunmay Talegaonkar, Junheng Zhu, Woo-Seok Choi, A. Elmallah, P. Hanumolu\",\"doi\":\"10.1109/ISSCC.2017.7870476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serial link transceivers that can operate across a wide range of data rates offer flexibility and rapid realization of single-chip multi-standard solutions. The ability to independently control the data rate of each lane in a multi-lane transceiver with fine granularity is also valuable [1,2]. The implementation of such transceivers would require analog front-ends and clocking circuits that can operate over a wide range of frequencies. As a result, compared to transceivers that are optimized to operate at one single data rate, flexible-rate transceivers are power and area hungry [1]. Because a single PLL cannot generate clocks across the entire interface operating range, [1,2] use multiple LC tanks, carefully optimized waveform shaping circuits, power hungry clock distribution, and complex frequency planning methods.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
29.6 A 3-to-10Gb/s 5.75pJ/b transceiver with flexible clocking in 65nm CMOS
Serial link transceivers that can operate across a wide range of data rates offer flexibility and rapid realization of single-chip multi-standard solutions. The ability to independently control the data rate of each lane in a multi-lane transceiver with fine granularity is also valuable [1,2]. The implementation of such transceivers would require analog front-ends and clocking circuits that can operate over a wide range of frequencies. As a result, compared to transceivers that are optimized to operate at one single data rate, flexible-rate transceivers are power and area hungry [1]. Because a single PLL cannot generate clocks across the entire interface operating range, [1,2] use multiple LC tanks, carefully optimized waveform shaping circuits, power hungry clock distribution, and complex frequency planning methods.