{"title":"横跨Bjørnafjord的浮桥的长期极端响应","authors":"Finn-Idar Grøtta Giske, A. Fredriksen","doi":"10.1115/omae2019-95212","DOIUrl":null,"url":null,"abstract":"\n In this paper, long-term extreme response analysis is performed for a straight floating bridge across the Bjørnafjord, using a recently developed inverse first-order reliability method (IFORM) approach. Full integration of the long-term extreme response formulation is also performed for comparison. Two different environmental models are estimated based on a scatter diagram of significant wave height and peak period for the given location. The IFORM method is seen to provide reasonable estimates of the long-term extreme response, at a significantly reduced computational effort.","PeriodicalId":314553,"journal":{"name":"Volume 3: Structures, Safety, and Reliability","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Term Extreme Response of a Straight Floating Bridge Across the Bjørnafjord\",\"authors\":\"Finn-Idar Grøtta Giske, A. Fredriksen\",\"doi\":\"10.1115/omae2019-95212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, long-term extreme response analysis is performed for a straight floating bridge across the Bjørnafjord, using a recently developed inverse first-order reliability method (IFORM) approach. Full integration of the long-term extreme response formulation is also performed for comparison. Two different environmental models are estimated based on a scatter diagram of significant wave height and peak period for the given location. The IFORM method is seen to provide reasonable estimates of the long-term extreme response, at a significantly reduced computational effort.\",\"PeriodicalId\":314553,\"journal\":{\"name\":\"Volume 3: Structures, Safety, and Reliability\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Structures, Safety, and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Structures, Safety, and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long-Term Extreme Response of a Straight Floating Bridge Across the Bjørnafjord
In this paper, long-term extreme response analysis is performed for a straight floating bridge across the Bjørnafjord, using a recently developed inverse first-order reliability method (IFORM) approach. Full integration of the long-term extreme response formulation is also performed for comparison. Two different environmental models are estimated based on a scatter diagram of significant wave height and peak period for the given location. The IFORM method is seen to provide reasonable estimates of the long-term extreme response, at a significantly reduced computational effort.